
Oracle® Rdb7 for OpenVMS
Release Notes

Release 7.0.6.2

September 2001

®

Oracle Rdb7 Release Notes, Release 7.0.6.2 for OpenVMS

Copyright © 1984, 2001 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs
on behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are
"commercial computer software" and use, duplication, and disclosure of the Programs, including
documentation, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement. Otherwise, Programs delivered subject to the Federal Acquisition Regulations
are "restricted computer software" and use, duplication, and disclosure of the Programs shall be
subject to the restrictions in FAR 52.227-19, Commercial Computer Software - Restricted Rights
(June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy, and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle Corporation disclaims liability for any damages
caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Rdb7, Oracle SQL/Services, Oracle7, Oracle
Expert, and Oracle Rally are trademarks or registered trademarks of Oracle Corporation. Other
names may be trademarks of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

1 Installing Oracle Rdb7 Release 7.0.6.2

1.1 Requirements . 1–1
1.2 Invoking VMSINSTAL . 1–1
1.3 Stopping the Installation . 1–2
1.4 After Installing Oracle Rdb7 . 1–2
1.5 Alpha EV68 Processor Support Added . 1–2
1.6 Maximum OpenVMS Version Check Added . 1–3

2 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.1 Software Errors Fixed That Apply to All Interfaces 2–1
2.1.1 Query with UNION Subselect Returns Wrong Results 2–1
2.1.2 Excessive Pages Discarded when Using COMMIT TO JOURNAL

OPTIMIZATION . 2–2
2.1.3 Bugchecks at PIOGB$FETCH_FROM_GB + 488 2–3
2.1.4 Query with CONCATENATE in BETWEEN Clause Returns Wrong

Results . 2–3
2.1.5 ORDER BY Query With GROUP BY on Two Joined Derived Tables

Returns Wrong Results . 2–4
2.1.6 Left Outer Join Query With CONCATENATE Returns Wrong

Results . 2–6
2.1.7 Query With UNION in German Collating Sequence Returns Wrong

Results . 2–7
2.1.8 Query With OR Predicate on Aggregate Column Returns Wrong

Results . 2–8
2.1.9 Query With Equality Predicate Included in IN Clause Returns Wrong

Results . 2–10
2.1.10 Duplicate Node Algorithm Improved . 2–11
2.1.11 Bugchecks at DIOCCHDBR$UNLATCH_GRCL With Exception of

COSI-F-NONEXPR . 2–12
2.1.12 Match Strategy on Columns of Different Size, Using Collating

Sequence, Returns Wrong Results . 2–12
2.1.13 Network Link Failure Does Not Allow DISCONNECT to Clean Up

Transactions . 2–13
2.1.14 Failure to Extend a Storage Area May Leave the LEOF of the .RDA

File Pointing Beyond the PEOF . 2–14
2.1.15 Left Outer Join Query With CAST Function on USING Column

Bugchecks . 2–14
2.1.16 Query Using Constant Values in OR Predicates Returns Wrong

Results . 2–15
2.1.17 Manual Open Causes Utility Access State to Persist Until Close 2–16

iii

2.1.18 LogMiner Compresses Pre-Delete Record Content 2–17
2.1.19 Excessive Disk I/O for DROP TABLE and TRUNCATE TABLE 2–17
2.1.20 Query Joining Derived Tables of Union Legs With Empty Tables

Returns Wrong Results . 2–18
2.1.21 Left Outer Join Query With OR Predicate Returns Wrong Results . . . 2–20
2.1.22 Query Using Match Strategy With DISTINCT Function Returns

Wrong Results . 2–21
2.1.23 GROUP BY Query With SUM Aggregate Returns Wrong Results 2–23
2.1.24 ARBs Exhausted . 2–25
2.1.25 CLEAN BUFFER COUNT Parameter Not Obeyed 2–25
2.1.26 DETECTED ASYNC PREFETCH THRESHOLD Not Obeyed 2–25
2.1.27 Page Locks Not Demoted at End of Transaction When FAST COMMIT

Enabled . 2–26
2.1.28 Incorrect Record Written to AIJ for Ranked Indexes 2–26
2.1.29 ROLLBACK Hangs Under DECdtm When Called From an ACMS

CANCEL Procedure . 2–27
2.2 SQL Errors Fixed . 2–27
2.2.1 Supplied CHR Function Returns Incorrect Value 2–27
2.2.2 IMPORT DATABASE Did Not Substitute New Collating Sequence

. 2–28
2.2.3 ALTER TABLE Support Extended for Temporary Tables 2–29
2.2.4 ATOMIC Block Not Rolling Back Changes on Error 2–30
2.2.5 GROUP BY Queries Fail With INVALID_BLR Error 2–31
2.2.6 Using Null Indicators With Dynamic SQL and Compound Statements

Yields Incorrect Results . 2–31
2.2.7 Using the CALL Statement in Dynamic SQL Results in Input

Parameters Not Being Written to SQLDA . 2–33
2.2.8 New Minimum Value for the INTERVAL Leading Precision 2–34
2.2.9 Command Line Recall Expanded to 255 Lines 2–35
2.2.10 Incorrect Processing of CASE Expression . 2–35
2.2.11 %RDB-E-NO_DIST_BATCH_U Error When Executing SET

TRANSACTION . 2–36
2.3 Oracle RMU Errors Fixed . 2–36
2.3.1 RMU/Extract Fails to Extract IMPORT Script from Multischema

Database . 2–36
2.3.2 RMU/Extract May Abort with ACCVIO and Bugcheck 2–37
2.3.3 RMU/Extract /ITEM=WORKLOAD Generates Incomplete Output . . . 2–37
2.3.4 RMU Commands May Leave Zero Length Log File 2–37
2.3.5 %RDB-E-INVALID_BLR When Group By Count(*) 2–38
2.3.6 Full Logical Area Name Displayed in Zoom Screen 2–38
2.3.7 RMU /UNLOAD Specifying Both /VIRTUAL and

/RECORD_DEFINITION . 2–38
2.3.8 RMU /SET AFTER_JOURNAL /SWITCH and Automatic Backup

Server Does Not Backup All Journals . 2–38
2.3.9 RMU /VERIFY Constraint Reports Erroneous Error 2–39
2.3.10 RMU/DUMP/AFTER /START and /END Qualifiers are Difficult to

Use . 2–39
2.3.11 RMU/LOAD FILACCERR Exception While Reading Input File 2–40
2.3.12 RMU/LOAD Access Violation When Table Constraints Were

Defined . 2–41
2.3.13 RMU/UNLOAD/AFTER_JOURNAL CPU Loop With Large

Fragmented Record . 2–41
2.3.14 RMU/VERIFY/INDEX/TRANS=READ_ONLY Did Not Detect

BADIDXREL . 2–41

iv

2.3.15 RMU /UNLOAD Closes .RRD File Earlier . 2–42
2.3.16 RMU /UNLOAD /AFTER_JOURNAL Requires Accurate AIP Logical

Area Information . 2–42
2.3.17 Asterisks Displayed for STID on >99 Attaches in RMU/SHOW

STATISTICS . 2–43
2.3.18 RMU/SHOW STATISTICS Displays Physical Area Name for Page

Lock . 2–43
2.3.19 RMU/SHOW STATISTICS Incorrect AIJ CurrEOF Value 2–44
2.3.20 RMU /UNLOAD /AFTER_JOURNAL Excessive Work File I/O 2–44
2.3.21 RMU/Extract Not Formatting View Column Expressions Correctly

. 2–45
2.3.22 Recovery Journals With Only Rollback Records Not Handled

Correctly . 2–45
2.3.23 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records

Clarification . 2–45

3 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

3.1 Software Errors Fixed That Apply to All Interfaces 3–1
3.1.1 Excessive Pages Checked/Discarded When Storing New Rows 3–1
3.1.2 Quota Exceeded Conditions During DAPF May Lead To Missing

Updates . 3–1
3.1.3 Bugcheck at LCKCCH$LOCK_RET_NOT_OK During Hash Index

Creation . 3–2
3.1.4 Attempts to Truncate Snapshot Files Online Hang 3–4
3.1.5 Excessive SPAM Page Locks, I/O and Stalls With Fast Incremental

Backup . 3–4
3.1.6 Date Function Causes RDML/PASCAL Compilation Problems 3–5
3.1.7 RDBPRE Results in MAXARGEXC Warning from Alpha MACRO

Compiler . 3–6
3.1.8 Error Writing File SORTWORK.TMP, Normal Successful

Completion . 3–7
3.1.9 Extraneous Logical Area Created by DROP STORAGE MAP 3–7
3.1.10 Cannot Disable SAME BACKUP FILENAME Clause 3–7
3.1.11 Query Having OR Compound Predicates With Subquery Returns

Wrong Results . 3–8
3.1.12 Query Using OR/AND Predicates With EXISTS Clause Returns

Wrong Results . 3–8
3.1.13 Query Using German Collating Sequence Returns Wrong Results 3–9
3.1.14 Left Outer Join Query Returns Wrong Results When ON Clause

Evaluates to False . 3–10
3.1.15 Query With Two IN Clauses on Two Subqueries Returns Wrong

Results . 3–11
3.1.16 Query Having Same SUBSTRINGs Within CASE Expression Returns

Wrong Results . 3–12
3.1.17 AIJ File Name Was Not Translated When Defined in SQL 3–14
3.1.18 Erroneous RDMS-F-ALSACTIVE Errors . 3–15
3.1.19 Aggregate Query With Nested MIN Function Returns Wrong

Results . 3–15
3.2 SQL Errors Fixed . 3–16
3.2.1 IMPORT of Multi-file Database as Single File Database May Fail . . . 3–16
3.2.2 Known Problems With EXPORT and IMPORT Fixed 3–16
3.2.3 Truncated Values Output by TRACE Statement 3–17

v

3.2.4 Multiple NOT NULL Constraints Generate WHYTWICE Exception
. 3–17

3.2.5 DROP FUNCTION or DROP PROCEDURE Leave Dependency
Records . 3–18

3.3 Oracle RMU Errors Fixed . 3–20
3.3.1 RMU /UNLOAD /AFTER_JOURNAL Sort Performance 3–20
3.3.2 RMU /UNLOAD /AFTER_JOURNAL DBKEY and Records in Mixed

Format Storage Areas . 3–20
3.3.3 Confusing Lock Mode Displays Updated . 3–21
3.3.4 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 3–21
3.3.5 RMU/SHOW STATISTICS RMS-F-DEV Error With /INPUT 3–22

4 Enhancements

4.1 Enhancements Provided in Oracle Rdb7 Release 7.0.6.2 4–1
4.1.1 New /TRANSACTION_TYPE Qualifier for RMU /Unload 4–1
4.1.2 New /TRANSACTION_TYPE Qualifier for RMU/Extract 4–3
4.1.3 Installing Oracle Rdb Images as Resident on OpenVMS Alpha 4–5
4.1.4 New DUMP Output Format for LogMiner . 4–5
4.1.5 Data and Spam Prefetch Screens Added to RMU/SHOW Statistics . . . 4–6
4.2 Enhancements Provided in Oracle Rdb7 Release 7.0.6.1 4–7
4.2.1 RMU /UNLOAD /AFTER_JOURNAL Database Metadata File 4–7

5 Documentation Corrections

5.1 Documentation Corrections . 5–1
5.1.1 Clarification of SET FLAGS Option DATABASE_PARAMETERS 5–1
5.1.2 The Halloween Problem . 5–1
5.1.3 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 5–3
5.1.4 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector

Clarification . 5–3
5.1.5 Location of Host Source File Generated by the SQL Precompilers 5–6
5.1.6 Suggestion to Increase GH_RSRVPGCNT Removed 5–7
5.1.7 Clarification of the DDLDONOTMIX Error Message 5–7
5.1.8 Compressed Sorted Index Entry Stored in Incorrect Storage Area . . . 5–8
5.1.9 Partition Clause is Optional on CREATE STORAGE MAP 5–10
5.1.10 Oracle Rdb Logical Names . 5–10
5.1.11 Waiting for Client Lock Message . 5–10
5.1.12 Documentation Error in Oracle Rdb7 Guide to Database Performance

and Tuning . 5–12
5.1.13 SET FLAGS Option IGNORE_OUTLINE Not Available 5–12
5.1.14 SET FLAGS Option INTERNALS Not Described 5–12
5.1.15 Documentation for VALIDATE_ROUTINE Keyword for SET

FLAGS . 5–13
5.1.16 Documentation for Defining the RDBSERVER Logical Name 5–13
5.1.17 Undocumented SET Commands and Language Options 5–14
5.1.17.1 QUIET COMMIT Option . 5–14
5.1.17.2 COMPOUND TRANSACTIONS Option . 5–15
5.1.18 Undocumented Size Limit for Indexes with Keys Using Collating

Sequences . 5–16
5.1.19 Changes to RMU/REPLICATE AFTER/BUFFERS Command 5–16
5.1.20 Change in the Way RDMAIJ Server is Set Up in UCX 5–17
5.1.21 CREATE INDEX Supported for Hot Standby . 5–18
5.1.22 Dynamic OR Optimization Formats . 5–18

vi

6 Known Problems and Restrictions

6.0.1 Running Rdb Applications With the VMS Heap Analyzer 6–1
6.0.2 RMU/RECOVER/AREA Needs Area List . 6–1
6.0.3 PAGE TRANSFER VIA MEMORY Disabled . 6–1
6.0.4 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 6–2
6.0.5 Behavior Change in ’With System Logical_Name Translation’ Clause

. 6–3
6.0.6 Carry-Over Locks and NOWAIT Transactions Clarification 6–3
6.0.7 Strict Partitioning May Scan Extra Partitions 6–4
6.0.8 Exclusive Access Transactions May Deadlock With RCS Process 6–4
6.0.9 Oracle Rdb and OpenVMS ODS-5 Volumes . 6–5
6.0.10 Clarification of the USER Impersonation Provided by the Oracle Rdb

Server . 6–5
6.0.11 Index STORE Clause WITH LIMIT OF Not Enforced in Single

Partition Map . 6–6
6.0.12 Unexpected NO_META_UPDATE Error Generated by DROP

MODULE ... CASCADE When Attached by PATHNAME 6–6
6.0.13 Unexpected DATEEQLILL Error During IMPORT With CREATE

INDEX or CREATE STORAGE MAP . 6–7
6.0.14 Application and Oracle Rdb Both Using SYS$HIBER 6–7
6.0.15 IMPORT Unable to Import Some View Definitions 6–8
6.0.16 AIJSERVER Privileges . 6–9
6.0.17 Lock Remastering and Hot Standby . 6–9
6.0.18 RDB_SETUP Privilege Error . 6–10
6.0.19 Starting Hot Standby on Restored Standby Database May Corrupt

Database . 6–10
6.0.20 Restriction on Compound Statement Nesting Levels 6–10
6.0.21 Back Up All AIJ Journals Before Performing a Hot Standby

Switchover Operation . 6–12
6.0.22 Concurrent DDL and Read-Only Transaction on the Same Table Not

Compatible . 6–12
6.0.23 Oracle Rdb and the SRM_CHECK Tool . 6–12
6.0.24 Oracle RMU Checksum_Verification Qualifier 6–13
6.0.25 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL

(Alpha) . 6–14
6.0.26 Restriction on Using /NOONLINE with Hot Standby 6–14
6.0.27 SELECT Query May Bugcheck with

PSII2SCANGETNEXTBBCDUPLICATE Error 6–14
6.0.28 DBAPack for Windows 3.1 is Deprecated . 6–14
6.0.29 Determining Mode for SQL Non-Stored Procedures 6–15
6.0.30 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE

Error . 6–17
6.0.31 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 6–18
6.0.32 Interruptions Possible when Using Multistatement or Stored

Procedures . 6–18
6.0.33 Row Cache Not Allowed on Standby Database While Hot Standby

Replication Is Active . 6–19
6.0.34 Hot Standby Replication Waits when Starting if Read-Only

Transactions Running . 6–20
6.0.35 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL

Oracle Functions Script . 6–20
6.0.36 DEC C and Use of the /STANDARD Switch . 6–20
6.0.37 Excessive Process Page Faults and Other Performance Considerations

During Oracle Rdb Sorts . 6–21

vii

6.0.38 Performance Monitor Column Mislabeled . 6–22
6.0.39 Restriction Using Backup Files Created Later than Oracle Rdb7

Release 7.0.1 . 6–22
6.0.40 RMU Backup Operations and Tape Drive Types 6–23
6.0.41 Use of Oracle Rdb from Shared Images . 6–23
6.0.42 Restriction Added for CREATE STORAGE MAP on Table with

Data . 6–23
6.0.43 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error . . . 6–24
6.0.44 Oracle Rdb7 Workload Collection Can Stop Hot Standby

Replication . 6–24
6.0.45 RMU Convert Command and System Tables . 6–26
6.0.46 Converting Single-File Databases . 6–26
6.0.47 Restriction when Adding Storage Areas with Users Attached to

Database . 6–26
6.0.48 Restriction on Tape Usage for Digital UNIX V3.2 6–26
6.0.49 Support for Single-File Databases to be Dropped in a Future

Release . 6–26
6.0.50 DECdtm Log Stalls . 6–27
6.0.51 Cannot Run Distributed Transactions on Systems with DECnet/OSI

and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0 6–27
6.0.52 Multiblock Page Writes May Require Restore Operation 6–28
6.0.53 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to

Clean Up Transactions . 6–28
6.0.54 Replication Option Copy Processes Do Not Process Database Pages

Ahead of an Application . 6–28
6.0.55 SQL Does Not Display Storage Map Definition After Cascading Delete

of Storage Area . 6–29
6.0.56 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE

CASE . 6–30
6.0.57 Different Methods of Limiting Returned Rows from Queries 6–30
6.0.58 Suggestions for Optimal Usage of the SHARED DATA DEFINITION

Clause for Parallel Index Creation . 6–31
6.0.59 Side Effect when Calling Stored Routines . 6–33
6.0.60 Nested Correlated Subquery Outer References Incorrect 6–34
6.0.61 Considerations when Using Holdable Cursors 6–35
6.0.62 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler

for PL/I in Oracle Rdb Release 5.0 or Higher . 6–36
6.0.63 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations

Incorrectly . 6–36
6.0.64 RMU Parallel Backup Command Not Supported for Use with SLS . . . 6–37
6.1 Oracle CDD/Repository Restrictions . 6–37
6.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features 6–37
6.1.2 Multischema Databases and CDD/Repository 6–39
6.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU

Privileges Access Control Lists . 6–39
6.1.3.1 Installing the Corrected CDDSHR Images 6–40
6.1.3.2 CDD Conversion Procedure . 6–41

viii

Examples

5–1 Interactive Cursor with no Halloween Protection 5–2
5–2 Interactive Cursor with Halloween Protection 5–2

Tables

2–1 Valid /TYPE keywords . 2–43
3–1 Recommended Minimum Process Quotas . 3–2
5–1 Object Type Values . 5–11
6–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features 6–37

ix

Preface

Purpose of This Manual
This manual contains release notes for Oracle Rdb7 Release 7.0.6.2. The
notes describe changed and enhanced features; upgrade and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections. These release notes cover both Oracle Rdb7 for
OpenVMS Alpha and Oracle Rdb7 for OpenVMS VAX, which are referred to by
their abbreviated name, Oracle Rdb7.

Intended Audience
This manual is intended for use by all Oracle Rdb7 users. Read this manual
before you install, upgrade, or use Oracle Rdb7 Release 7.0.6.2.

Document Structure
This manual consists of six chapters:

Chapter 1 Describes how to install Oracle Rdb7 Release 7.0.6.2.

Chapter 2 Describes software errors corrected in Oracle Rdb7 Release 7.0.6.2.

Chapter 3 Describes software errors corrected in Oracle Rdb7 Release 7.0.6.1.

Chapter 4 Describes enhancements introduced in Oracle Rdb7 Release 7.0.6.2.

Chapter 5 Provides information not currently available in the Oracle Rdb7
documentation set.

Chapter 6 Describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.6.2.

ix

1
Installing Oracle Rdb7 Release 7.0.6.2

This software update is installed using the standard OpenVMS Install Utility.

NOTE

Beginning with this release of Oracle Rdb7, Release 7.0.6.2, all new
Oracle Rdb7 kits released will be full kits. We will no longer ship partial
kits (known as ECOs in the past). Therefore, there will be no need to
install any prior release of Oracle Rdb7 when installing new Rdb7 kits.

1.1 Requirements
The following conditions must be met in order to install this software update:

• Oracle Rdb7 must be shutdown before you install this update kit. That is,
the command file SYS$STARTUP:RMONSTOP(70).COM should be executed
before proceeding with this installation. If you have an OpenVMS cluster, you
must shutdown all versions of Oracle Rdb7 on all nodes in the cluster before
proceeding.

• The installation requires approximately 100,000 free blocks on your system
disk for OpenVMS VAX systems; 200,000 blocks for OpenVMS Alpha systems.

1.2 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure:

@SYS$UPDATE:VMSINSTAL variant-name device-name OPTIONS N

variant-name

The variant names for the software update for Oracle Rdb7 Release 7.0.6.2 are:

• RDBSE2F070 for Oracle Rdb7 for OpenVMS VAX standard version.

• RDBASE2F070 for Oracle Rdb7 for OpenVMS Alpha standard version.

• RDBMVE2F070 for Oracle Rdb7 for OpenVMS VAX multiversion.

• RDBAMVE2F070 for Oracle Rdb7 for OpenVMS Alpha multiversion.

device-name

Use the name of the device on which the media is mounted.

• If the device is a disk drive, such as a CD-ROM reader, you also need to
specify a directory. For CD-ROM distribution, the directory name is the same
as the variant name. For example:

DKA400:[RDBSE2F070.KIT]

Installing Oracle Rdb7 Release 7.0.6.2 1–1

• If the device is a magnetic tape drive, you need to specify only the device
name. For example:

MTA0:

OPTIONS N

This parameter prints the release notes.

The following example shows how to start the installation of the VAX standard
kit on device MTA0: and print the release notes:

$ @SYS$UPDATE:VMSINSTAL RDBSE2F070 MTA0: OPTIONS N

1.3 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press
Ctrl/Y, the installation procedure deletes all files it has created up to that point
and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you
and a prompt asks if you want to continue. You might want to continue the
installation to see if any additional problems occur. However, the copy of Oracle
Rdb7 installed will probably not be usable.

1.4 After Installing Oracle Rdb7
This update provides a new Oracle Rdb7 Oracle TRACE facility definition. Any
Oracle TRACE selections that reference Oracle Rdb7 will need to be redefined
to reflect the new facility version number for the updated Oracle Rdb7 facility
definition, ‘‘RDBVMSV7.0-62’’.

If you have Oracle TRACE installed on your system and you would like to collect
for Oracle Rdb7, you must insert the new Oracle Rdb7 facility definition included
with this update kit.

The installation procedure inserts the Oracle Rdb7 facility definition into a
library file called EPC$FACILITY.TLB. To be able to collect Oracle Rdb7 event-
data using Oracle TRACE, you must move this facility definition into the Oracle
TRACE administration database. Perform the following steps:

1. Extract the definition from the facility library to a file (in this case,
RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.0-62 -
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

2. Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

Note that if you are installing the multiversion variant of Oracle Rdb7, the
process executing the INSERT DEFINITION command must use the version
of Oracle Rdb7 that matches the version used to create the Oracle TRACE
administration database or the INSERT DEFINITION command will fail.

1.5 Alpha EV68 Processor Support Added
As of this release of Rdb7, Oracle Rdb7 Release 7.0.6.2, the Alpha EV68 processor
is supported.

1–2 Installing Oracle Rdb7 Release 7.0.6.2

1.6 Maximum OpenVMS Version Check Added
As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has
been added to the product. Oracle Rdb has always had a minimum OpenVMS
version requirement. With 7.0.1.5 and for all future Oracle Rdb releases, we have
expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve
product quality.

OpenVMS Version 7.3 is the maximum supported version of OpenVMS.

As of Oracle Rdb7 Release 7.0.3, the Alpha EV6 processor is supported. As
of Oracle Rdb7 Release 7.0.5, the Alpha EV67 processor is supported. As of
Oracle Rdb7 Release 7.0.6, the Alpha Wildfire processor is supported (see http:/
/metalink.oracle.com for specifics on which Wildfire configurations are supported).
As of Oracle Rdb7 Release 7.0.6.2, the Alpha EV68 processor is supported.

The check for the OpenVMS operating system version and supported hardware
platforms is performed both at installation time and at runtime. If either a
non-certified version of OpenVMS or hardware platform is detected during
installation, the installation will abort. If a non-certified version of OpenVMS or
hardware platform is detected at runtime, Oracle Rdb will not start.

Installing Oracle Rdb7 Release 7.0.6.2 1–3

2
Software Errors Fixed in Oracle Rdb7 Release

7.0.6.2

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.6.2.

2.1 Software Errors Fixed That Apply to All Interfaces
2.1.1 Query with UNION Subselect Returns Wrong Results

Bug 1656974

The following query with UNION subselect should return 0 rows.

set flags ’strategy,detail’;
select ps.id, ps.kbn, ps.ymd
from (select ps1.id,

ps1.kbn,
’99999999’ ! <== this causes the problem

from ps ps1, pm pm
where pm.id = ps1.id

union all
select ps2.id,

ps2.kbn,
ps2.end_ymd

from ps ps2, pm pm
where pm.id = ps2.id)

as ps (id, kbn, ymd)
where ps.id = ’021023307’ and

ps.ymd > ’12345678’ and
ps.kbn in (’1’,’2’) ;

Tables:
0 = PS
1 = PM
2 = PS
3 = PM

Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 1.id = 0.ID
Match

Outer loop (zig-zag)
Conjunct: 0.ID = ’021023307’
Conjunct: ’99999999’ > ’12345678’
Get Retrieval by index of relation 0:PS
Index name IDX_PS_2 [1:1] Bool
Key: <mapped field> = ’021023307’
Bool: ’99999999’ > ’12345678’

Inner loop (zig-zag)
Index only retrieval of relation 1:PM
Index name IDX_PM_0 [0:0]

Merge block entry 2

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–1

Conjunct: 3.id = 2.ID
Match

Outer loop (zig-zag)
Conjunct: (2.ID = ’021023307’) AND (2.end_ymd > ’12345678’)

AND ((2.kbn = ’1’) OR (2.kbn = ’2’))
Get Retrieval by index of relation 2:PS
Index name IDX_PS_2 [2:1]
Key: (<mapped field> = ’021023307’) AND (<mapped field> > ’12345678’

)
Inner loop (zig-zag)
Index only retrieval of relation 3:PM
Index name IDX_PM_0 [0:0]

ID KBN YMD
021023307 0 99999999
1 row selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The query contains a subselect of a UNION, where one of the columns is a
literal, e.g. ’99999999’.

2. The where clause contains an equality predicate, a GTR predicate, and an IN
clause.

As a workaround, the query works if the IN clause is moved before the GTR
predicate, as in the following example.

set flags ’strategy,detail’;
! The following query should return 0 rows
!
select ps.ID, ps.kbn, ps.ymd
from (select ps1.ID,

ps1.kbn,
’99999999’

from ps ps1, pm pm
where pm.id = ps1.ID

union all
select ps2.id,

ps2.kbn,
ps2.end_ymd

from ps ps2, pm pm
where pm.id = ps2.id)

as ps (id, kbn, ymd)
where ps.id = ’021023307’ and

ps.kbn in (’1’,’2’) and <=== moved
ps.ymd > ’12345678’ ;

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.2 Excessive Pages Discarded when Using COMMIT TO JOURNAL
OPTIMIZATION

Bug 1533127

When the COMMIT TO JOURNAL OPTIMIZATION was enabled and a READ
ONLY transaction was active, Oracle Rdb7 would not reclaim space on data pages
for deleted lines. For example, if an online backup operation was active, then
for the duration of the backup operaton, space would not be reclaimed. This
could result in a high number of ‘‘pages discarded’’ as displayed on the ‘‘Record
Statistics’’ screen of the RMU/SHOW STATISTICS Utility. It was also possible to
see unneeded storage area extensions.

2–2 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. READ ONLY
transactions no longer prevent Oracle Rdb7 from reclaiming deleted lines when
the COMMIT TO JOURNAL feature is enabled.

2.1.3 Bugchecks at PIOGB$FETCH_FROM_GB + 488
Bug 714899

When the global buffer feature was enabled, it was possible to get bugchecks in
PIOGB$FETCH_FROM_GB due to a deadlock between a page lock request and
an Oracle Rdb7 internal buffer latch request.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.4 Query with CONCATENATE in BETWEEN Clause Returns Wrong Results
Bug 1663038

The following query uses the CONCATENATE function in the BETWEEN clause.
It should return 3 rows, but it returns only 1 row.

SQL> sh tab ORDER;
Information for table ORDER

Columns for table ORDER:
Column Name Data Type Domain
----------- --------- ------
ORDER_NO CHAR(4)
Not Null constraint ORDER_NO_NOT_NULL

SHIP_DATE CHAR(8)
Not Null constraint ORDER_NOT_NULL

SHIP_STAT CHAR(1)
Not Null constraint ORDER_NOT_NULL

...etc...

Table constraints for ORDER:
ORDER_NOT_NULL
Not Null constraint
Column constraint for ORDER.SHIP_DATE
Evaluated on COMMIT
Source:

ORDER.SHIP_DATE NOT null
...etc...

SQL> sel order_no from customer;
ORDER_NO
1ED0
1j80
1a78
3 rows selected
SQL> sel order_no,ship_date,ship_stat from order;
ORDER_NO SHIP_DATE SHIP_STAT
1ED0 20010301 b
1a78 20010228 a
1j80 20010301 a
3 rows selected

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–3

set flags ’strategy,detail’;
set flags ’max_stab’;
select a.order_no, a.ship_date, a.ship_stat
from ORDER a, CUSTOMER b
where a.order_no = b.order_no and

((a.SHIP_DATE || a.SHIP_STAT)
BETWEEN ’20010228a’ ’20010301d’) ;

Tables:
0 = ORDER
1 = CUSTOMER

Cross block of 2 entries
Cross block entry 1
Conjunct:
(0.SHIP_DATE > SUBSTRING (’20010228a’ FROM 0 FOR 8)) OR
((0.SHIP_DATE = SUBSTRING (’20010228a’ FROM 0 FOR 8)) AND
(0.SHIP_STAT >= SUBSTRING (’20010228a’ FROM 8)))

Conjunct:
((0.SHIP_DATE < SUBSTRING (’20010301d’ FROM 0 FOR 8)) AND
NOT MISSING (0.SHIP_STAT)) OR
((0.SHIP_DATE = SUBSTRING (’20010301d’ FROM 0 FOR 8)) AND
(0.SHIP_STAT <= SUBSTRING (’20010301d’ FROM 8)))

Get Retrieval by index of relation 0:ORDER
Index name ORDER_UM01 [0:0]

Cross block entry 2
Index only retrieval of relation 1:CUSTOMER
Index name CUSTOMER_UM01 [1:1] Direct lookup
Key: 0.ORDER_NO = 1.ORDER_NO

A.ORDER_NO A.SHIP_DATE A.SHIP_STAT
1a78 20010228 a
1 row selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The table columns contain NOT NULL contraints.

2. The query contains a BETWEEN clause with CONCATENATE function on
two columns.

As a workaround, the query works if the column constraint ORDER_NOT_NULL
is removed from the columns of table ORDER.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.5 ORDER BY Query With GROUP BY on Two Joined Derived Tables
Returns Wrong Results

Bug 1694233

The following query with GROUP BY and ORDER BY clauses on two joined
derived tables returns the results in the wrong order.

set flags ’strategy,detail’;

2–4 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

select
cast (a.name as char(5)) as name,
a.datum

from (select name, datum,
cast (count (*) as integer) as count_a

from a
group by name, datum) a

join
(select name, datum,

cast (count (*) as integer) as count_b
from b
group by name, datum) b

on a.name = b.name
and a.datum = b.datum

group by a.name, b.name, a.datum, b.datum, count_a
order by name desc, a.datum asc
;

Tables:
0 = A
1 = B

Reduce: 0.NAME, 0.DATUM, 1.NAME, 1.DATUM, CAST (<mapped field> AS INT)
Sort: 0.NAME(a), 0.DATUM(a), 1.NAME(a), 1.DATUM(a), CAST (<mapped field> AS INT)

(a)
Cross block of 2 entries
Cross block entry 1
Merge of 1 entries
Merge block entry 1
Aggregate: COUNT (*)
Sort: 0.NAME(a), 0.DATUM(a)
Get Retrieval sequentially of relation 0:A

Cross block entry 2
Merge of 1 entries
Merge block entry 1
Aggregate: COUNT (*)
Sort: 1.NAME(a), 1.DATUM(a)
Conjunct: (0.NAME = 1.NAME) AND (0.DATUM = 1.DATUM)
Get Retrieval sequentially of relation 1:B

A.NAME A.DATUM
AAAA 1-JAN-2000 00:00:00.00 <=== BBBB should be followed by AAAA
BBBB 1-JAN-2000 00:00:00.00
2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query contains a GROUP BY clause on the columns of the two
joined derived tables with GROUP BY.

2. One of the columns from the derived tables is cast as the same data type.

3. The ORDER BY clause references the cast column but using descending
order.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–5

2.1.6 Left Outer Join Query With CONCATENATE Returns Wrong Results
Bug 1680135

The following left OJ query with CONCATENATE should return 1 row but
instead returns 0 rows.

set flags ’strategy,detail’;
SELECT ttt.entity_id,

ttt.cpty_id,
ttt.trade_count

FROM (SELECT tt.entity_id,
tt.cpty_id,
SUM (tt.trade_count) as trade_count

FROM (SELECT df.entity_id,
df.cpty_id,
case

when df.deal_status = ’X’ then 1 else 0
end as trade_count

from deal_folder df) as tt
GROUP BY tt.entity_id, tt.cpty_id) as ttt

LEFT OUTER JOIN
contact c ON (c.cpty_id = ttt.cpty_id)

WHERE
ttt.trade_count <> 0
and ttt.entity_id || ttt.cpty_id > ’’ ! <== this is causing problem
;

Tables:
0 = DEAL_FOLDER
1 = CONTACT

Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > ’’) <=(1)
Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Conjunct: <mapped field> <> 0
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (CASE (WHEN (0.DEAL_STATUS = ’X’) THEN 1

ELSE 0))
Sort: 0.ENTITY_ID(a), 0.CPTY_ID(a)
Merge of 1 entries
Merge block entry 1
Conjunct: (0.ENTITY_ID || 0.CPTY_ID) > ’’
Index only retrieval of relation 0:DEAL_FOLDER
Index name DEAL_FOLDER_MONITOR_IDX [0:0]

Cross block entry 2
Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > ’’) <=(2)
Conjunct: 1.CPTY_ID = 0.CPTY_ID
Index only retrieval of relation 1:CONTACT
Index name CONTACT_IDX [0:0]

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query is a left outer join between a derived table and a table.

2. The derived table contains a GROUP BY clause on the columns of another
derived table with an aggregate function SUM as the output column.

3. The main query has a WHERE predicate containing the CONCATENATE
function on two or more columns of the derived table.

4. The main query has another WHERE predicate which references the output
column of the aggregate function from the derived table.

2–6 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

As a workaround, the query works if the table 1:CONTACT has some rows or the
following CONCATENATE function is replaced by the following predicates:

ttt.entity_id || ttt.cpty_id > ’’

is replaced by

ttt.entity_id > ’’ AND ttt.cpty_id > ’’

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.7 Query With UNION in German Collating Sequence Returns Wrong
Results

Bug 1684612

The following query with a UNION clause, in a database where the German
Collating Sequence is used by default, returns wrong results (it should return
some rows).

select d.datum, d.id, d.team
from teamer d,

(select s.datum,s.id, s.team
from team_datum s
union all
select datum, id, team
from team_datum
) as s

where
d.datum=s.datum
;

Tables:
0 = teamer
1 = team_datum
2 = team_datum

Conjunct: 0.datum = <mapped field>
Match

Outer loop
Sort: <mapped field>(a)
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Get Retrieval sequentially of relation 1:team_datum
Merge block entry 2
Get Retrieval sequentially of relation 2:team_datum

Inner loop
Temporary relation
Sort: <mapped field>(a)
Get Retrieval sequentially of relation 0:teamer

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The query is a simple join between a table and a derived table of subselects
unioned together.

2. The join predicate uses CHAR data type.

3. The Optimizer uses a match strategy to join them, where a comparison of the
join keys requires the process of encoding the CHAR data type into German
collating sequence.

There is no known workaround for this problem.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–7

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.8 Query With OR Predicate on Aggregate Column Returns Wrong Results
Bugs 1708342 and 1721323

Query #1:

The following query with an OR predicate should return 1 row with T1.STATUS
= 3 but returns an extra row with T1.STATUS = 5. This row does not satisfy the
condition in the predicate "x.summe is null".

set flags ’max_stability’;
set flags ’strategy,detail’;
select

t1.id,
t1.status,
t1.anzahl_stuecke,
x.summe

from table1 t1,
(select sum(anzahl_stuecke) as summe
from table2 t2
where t1.id = t2.id) x

where
t1.status = 3
OR
(t1.status = 5 and x.summe is null) ;

Tables:
0 = TABLE1
1 = TABLE2

Cross block of 2 entries
Cross block entry 1
Conjunct: (0.STATUS = 3) OR (0.STATUS = 5)
Get Retrieval by index of relation 0:TABLE1
Index name XPKTABLE1 [0:0]

Cross block entry 2
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (1.ANZAHL_STUECKE)
Get Retrieval by index of relation 1:TABLE2
Index name XPKTABLE2 [1:1]
Keys: 0.ID = 1.ID

T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL
2 5 10 10

2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query joins a table and a derived table with a column of an
aggregate function (e.g. SUM).

2. The WHERE clause contains an OR predicate, where one of the branches
references the aggregated column.

As a workaround, the query works if the branches of the OR predicates are
swapped, as in the following example.

2–8 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

select
t1.id,
t1.status,
t1.anzahl_stuecke,
x.summe

from table1 t1,
(select sum(anzahl_stuecke) as summe
from table2 t2
where t1.id = t2.id) x

where
(t1.status = 5 and x.summe is null)
OR
t1.status = 3 ;

Tables:
0 = TABLE1
1 = TABLE2

Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 0:TABLE1
Index name XPKTABLE1 [0:0]

Cross block entry 2
Conjunct: ((0.STATUS = 5) AND MISSING (var) OR (0.STATUS = 3)
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (1.ANZAHL_STUECKE)
Get Retrieval by index of relation 1:TABLE2
Index name XPKTABLE2 [1:1]
Keys: 0.ID = 1.ID

T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL

1 row selected

Query #2:

The following query with an OR predicate should return 0 rows.

set flags ’max_stability’;
set flags ’strategy,detail’;
select

t1.id,
t1.status,
t1.anzahl_stuecke,
x.summe

from table1 t1,
(select

sum(anzahl_stuecke) as summe,
’hello’ as Artikel

from table2 t2
where t1.id = t2.id) x

where
t1.id <> 5 and
x.Artikel = ’hello should not be found’ and
((t1.status =3) or
(t1.status = 5 and (x.summe is NULL))

);
Tables:
0 = TABLE1
1 = TABLE2

Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 0:TABLE1
Index name XPKTABLE1 [0:0]
Bool: 0.ID <> 5

Cross block entry 2
Conjunct: (0.STATUS = 3) OR ((0.STATUS = 5) AND MISSING (var)
Merge of 1 entries

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–9

Merge block entry 1
Aggregate: SUM (1.ANZAHL_STUECKE)
Get Retrieval by index of relation 1:TABLE2
Index name XPKTABLE2 [1:1]
Keys: 0.ID = 1.ID
Bool: (1.ID <> 5) AND (’hello’ = ’hello should not be found’)

T1.ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL
2 5 10 NULL

2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query joins a table and a derived table with the column of an
aggregate function (e.g. SUM) and a column of a constant string.

2. The WHERE clause contains an OR predicate, where one of the branches
references the aggregate column.

3. The WHERE clause contains additional AND predicates where one of them
references the column of a constant string.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.9 Query With Equality Predicate Included in IN Clause Returns Wrong
Results

Bug 1727181

The following query with an equality predicate included in the IN clause should
find the row.

set flags ’strategy,detail’;
sel employee_id
from employees e, departments d
where

e.employee_id = d.manager_id and
d.department_code in (’ADMN’, ’ENG’, ’MKTG’) and
d.department_code = ’ENG’
;

Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Cross block of 2 entries
Cross block entry 1
Conjunct: (1.DEPARTMENT_CODE = ’ADMN’) OR (1.DEPARTMENT_CODE = ’MKTG’)
Conjunct: 1.DEPARTMENT_CODE = ’ENG’
Index only retrieval of relation 1:DEPARTMENTS
Index name DEPT_DEPTCODE_MGRID [1:1]
Keys: 1.DEPARTMENT_CODE = ’ENG’

Cross block entry 2
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPID_STATUS_CODE [1:1]
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The query joins two tables using a join predicate.

2. The query has an equality predicate which is also included in the IN clause.

2–10 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

As a workaround, the query works if the equality predicate is moved to the front
of the IN clause, as in the following example.

set flags ’strategy,detail’;
sel employee_id
from employees e, departments d
where

e.employee_id = d.manager_id and
d.department_code = ’ENG’ and <== move to front
d.department_code in (’ADMN’, ’ENG’, ’MKTG’)
;

Tables:
0 = EMPLOYEES
1 = DEPARTMENTS

Cross block of 2 entries
Cross block entry 1
Conjunct: 1.DEPARTMENT_CODE = ’ENG’
Conjunct: (1.DEPARTMENT_CODE = ’ADMN’) OR (1.DEPARTMENT_CODE = ’ENG’) OR (

1.DEPARTMENT_CODE = ’MKTG’)
Index only retrieval of relation 1:DEPARTMENTS
Index name DEPT_DEPTCODE_MGRID [1:1]
Keys: 1.DEPARTMENT_CODE = ’ENG’

Cross block entry 2
Conjunct: 1.DEPARTMENT_CODE = ’ENG’
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPID_STATUS_CODE [1:1]
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID

E.EMPLOYEE_ID
00471
1 row selected

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.10 Duplicate Node Algorithm Improved
In the case of an index with large index nodes (for example, larger than 5000
bytes), and small numbers of duplicates, the duplicate nodes created by CREATE
INDEX would be much larger than needed. When the database had many of
these duplicate nodes, the result could be a great waste of space in the database.
An example of such an index would be an index on EMPLOYEE_ID in a table
containing exactly two records per employee.

Prior to the current update, a workaround would be to use SORTED RANKED
indices.

Earlier versions of Rdb would create duplicate nodes of length equal to the full
node size, half the full node size, one-quarter, or one eighth of the full node size
depending on the number of duplicates found while creating the index. Provision
was thus allowed for adding duplicates as the database grew.

The current and future versions of Rdb recognize that even these reduced sizes
may be too large in today’s very large databases and continue halving to allow
1/16, 1/32, 1/64, or 1/128 of the full node size or, if those are still too large and
there are ten or fewer duplicates, the smallest node size allocated is 80 bytes plus
overhead (112). In any event, this latter size (112) is the smallest duplicate node
allocated.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–11

2.1.11 Bugchecks at DIOCCHDBR$UNLATCH_GRCL With Exception of
COSI-F-NONEXPR

In very rare cases of process failure when using the row cache feature, it was
possible for an Oracle Rdb7 process or database recovery process (DBR) to fail
with an exception of COSI-F-NONEXPR within DIOCCHDBR$UNLATCH_GRCL
(typically at offset 0000034C). This problem was found during in-house high-load
stress testing and was not customer reported.

This bugcheck was due to another process on the system being killed while
waiting for a latch. The bugcheck was triggered when the original process
attempted to wake the (now non-existant) process that had been waiting.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. The unlatch
code now correctly ignores the missing process during the wake request.

2.1.12 Match Strategy on Columns of Different Size, Using Collating
Sequence, Returns Wrong Results

Bug 1684643

The following query using match strategy on columns of different size, using
German collating sequence, should find the row.

select d.datum, d.abtlg, d.team, d.art
from teamergebnis_kumul d,

(select m.datum,m.abtlg, m.art, m.team
from std_team_datum m, prod_kumul_datum v

where m.datum=v.datum and
m.abtlg=v.abtlg and
m.team=v.produkt AND
m.team=’11.3512’

group by m.datum, m.abtlg, m.art, m.team) AS
s (datum, abtlg, art, team)

where d.datum=s.datum and
d.abtlg=s.abtlg and
d.team=s.team and
d.art=s.art and
d.abtlg=’465’ and d.datum=’20001031’ and
d.team=’11.3512’;

Tables:
0 = TEAMERGEBNIS_KUMUL
1 = STD_TEAM_DATUM
2 = PROD_KUMUL_DATUM

Cross block of 2 entries
Cross block entry 1
Conjunct: 0.TEAM = ’11.3512’
Get Retrieval by index of relation 0:TEAMERGEBNIS_KUMUL
Index name IDX_TEAMERGEBNIS_KUMUL_SORT [3:3]
Keys: (0.TEAM = ’11.3512’) AND (0.DATUM = ’20001031’) AND (0.ABTLG =

’465’)
Cross block entry 2
Conjunct: 0.ABTLG = 1.ABTLG
Conjunct: 0.TEAM = 1.TEAM
Conjunct: 0.ART = 1.ART
Merge of 1 entries
Merge block entry 1
Reduce: 1.TEAM, 1.ABTLG, 1.DATUM, 1.ART
Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a), 1.ART(a)
Conjunct: (1.DATUM = 2.DATUM) AND (1.ABTLG = 2.ABTLG) AND (1.TEAM =

2.PRODUKT)
Match

Outer loop
Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a)

2–12 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

Conjunct: 1.TEAM = ’11.3512’
Get Retrieval by index of relation 1:STD_TEAM_DATUM
Index name IDX_STD_TEAM_DATUM_SORT [2:2]
Keys: (0.DATUM = 1.DATUM) AND (1.ABTLG = ’465’)

Inner loop
Temporary relation
Sort: 2.PRODUKT(a), 2.ABTLG(a), 2.DATUM(a)
Conjunct: 2.PRODUKT = ’11.3512’
Get Retrieval by index of relation 2:PROD_KUMUL_DATUM
Index name IDX_PROD_KUMUL_DATUM_SORT [2:2]
Keys: (2.DATUM = 0.DATUM) AND (2.ABTLG = ’465’)

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query is a simple join between a table and a derived table of
subselect subquery, joining two tables using 3 equality predicates.

2. The join predicate uses columns of CHAR data type but different column size.

3. The optimizer uses a match strategy to join them, where a comparison of the
join keys requires the process of encoding the CHAR data type into German
collating sequence.

As a workaround, the query works if the match strategy is changed to use cross
by using an outline.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.13 Network Link Failure Does Not Allow DISCONNECT to Clean Up
Transactions

Bug 856747

In earlier versions of Oracle Rdb, if a program attached to a database on a remote
node and it lost the connection before the COMMIT statement was issued, there
was nothing you could do except exit the program and start again.

It is now possible to DISCONNECT the database and reconnect without
restarting the program.

The following example shows a dynamic SQL session to a remote database which
loses its connection to the remote server:

SQL> attach ’filename ataxp1::dkb200:<scott>personnel’;
SQL> select * from rdb$database;

-- at this point connection to remote server is lost:

Error -1 returned from open_cursor
Error message:
%RDB-F-IO_ERROR, input or output error
-SYSTEM-F-LINKABORT, network partner aborted logical link
SQL> rollback;
Error message:
%RDB-F-IO_ERROR, input or output error
-SYSTEM-F-LINKABORT, network partner aborted logical link
SQL> disconnect current;
Error message:
%RDB-F-IO_ERROR, input or output error
-SYSTEM-F-LINKABORT, network partner aborted logical link

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–13

The next example shows how to recover now that the disconnect is possible:

SQL> attach ’filename ataxp1::dkb200:<scott>personnel’;
SQL> select * from rdb$database;

-- at this point connection to remote server is lost:
Error -1 returned from open_cursor
Error message:
%RDB-F-IO_ERROR, input or output error
-SYSTEM-F-LINKABORT, network partner aborted logical link
SQL> disconnect current;
SQL> attach ’filename ataxp1::dkb200:<scott>personnel’;
SQL>
-- continue working

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.14 Failure to Extend a Storage Area May Leave the LEOF of the .RDA File
Pointing Beyond the PEOF

Bug 1316670

The logical EOF (LEOF) of the storage area file could be pointing beyond the
physical EOF (PEOF) of the file if an attempt to extend the storage area fails.
This happened since the LEOF was set to the new value even though the extend
of the file failed.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. Now the LEOF
is set to the new value only if the extend operation succeeds, for example, the
PEOF changes.

2.1.15 Left Outer Join Query With CAST Function on USING Column
Bugchecks

Bug 1802653

The following left outer join query with CAST function on USING column
bugchecks.

select count(*) from
(select p.paketwert from
(select

cast(packet as integer) ! <=== CAST causing bugcheck
from
serien inner join sujet using (sujet)

) as p (paketwert)
) as astpreis (paketwert)
left outer join
(select t.paketwert from
(select

packet
from
serien inner join sujet using (sujet)

) as t (paketwert)
) as opt(paketwert)
USING (paketwert) ;

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query is a left outer join of 2 nested derived tables.

2. The CAST function is placed on the column of USING clause.

There is no known workaround for this problem.

2–14 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.16 Query Using Constant Values in OR Predicates Returns Wrong Results
Bug 1769447

The following query using constant values in OR predicates should return 3 rows.

set flags ’strategy,detail’;

SELECT col1 FROM
(SELECT

t2.col1 as col1,
t2.col2 as col2,
t2.col3 as col3
from table1 t1, table2 t2
where t1.col1_id = t2.col1_id
) as

vt (col1, col2, col3)
WHERE

vt.col3 > 0 AND
vt.col2 >= 0 AND
(vt.col1 <= 3 OR ’hostvar’ = ’foo’);

Tables:
0 = TABLE1
1 = TABLE2

Merge of 1 entries
Merge block entry 1
Conjunct: 0.col1_id = 1.col1_id
Match

Outer loop (zig-zag)
Index only retrieval of relation 0:TABLE1
Index name TABLE1_NDX [0:0]

Inner loop (zig-zag)
Conjunct: (1.col3 > 0) AND (1.col2 >= 0)
Get Retrieval by index of relation 1:TABLE2
Index name TABLE2_NDX [0:0]
Bool: <error: common keyonly boolean no predicates>

COL1
1
2
3
4
5
6

6 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The query selects from a derived table of a subselect joining 2 tables.

2. The WHERE clause contains 2 AND predicates and 1 OR predicate.

3. The OR predicate contains a branch of constant predicates, such as "1 = 2".

As a workaround, the query works if the constant condition "’hostvar’ = ’foo’" is
omitted, as in the following example.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–15

set flags ’strategy,detail’;

SELECT col1 from
(SELECT

t2.col1 as col1,
t2.col2 as col2,
t2.col3 as col3
from table1 t1, table2 t2
where t1.col1_id = t2.col1_id
) as

vt (col1, col2, col3)
WHERE

vt.col3 > 0 AND
vt.col2 >= 0 AND
(vt.col1 <= 3

! OR ’hostvar’ = ’foo’ <=== commented out
);

Tables:
0 = TABLE1
1 = TABLE2

Merge of 1 entries
Merge block entry 1
Conjunct: 0.col1_id = 1.col1_id
Match

Outer loop (zig-zag)
Index only retrieval of relation 0:TABLE1
Index name TABLE1_NDX [0:0]

Inner loop (zig-zag)
Conjunct: (1.col3 > 0) AND (1.col2 >= 0) AND (1.col1 <= 3)
Get Retrieval by index of relation 1:TABLE2
Index name TABLE2_NDX [0:0]
Bool: 1.col1 <= 3

COL1
1
2
3

3 rows selected

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.17 Manual Open Causes Utility Access State to Persist Until Close
Bug 1587509

If a database was implicitly opened via some database utility access such as a
backup and, while the utility was attached to the database, a manual open was
issued, then the database would retain the ‘‘utility access only’’ state.

For example, if a database was opened by an RMU/BACKUP/ONLINE command,
while the backup was executing an RMU/SHOW SYSTEM would display the
following state for the database:

* database is available for utility access only

If an RMU/OPEN was then issued for the database while the backup was
executing then the above message would be displayed even after the backup
process completed. Having the database in this state would prevent the
automatic startup of database servers such as the AIJ Log Server (ALS) or
Row Cache Server (RCS). The processes could still be manually started by the
RMU/SERVER START command.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. Now when an
RMU/OPEN command is issued the ‘‘utility access only’’ state will be cleared.

2–16 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.1.18 LogMiner Compresses Pre-Delete Record Content
Previously, when the Oracle Rdb LogMiner(TM) feature was enabled, the pre-
delete record contents were not compressed prior to being journaled. Because of
this, it was possible for AIJ files to grow excessively if many large records were
being deleted.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. When the
Oracle Rdb LogMiner feature is enabled, pre-delete record contents are now
correctly compressed. Because of the difference in pre-delete record contents in
an AIJ file, it is important that AIJ files created with prior versions of Oracle
Rdb be processed with the matching version of the Oracle Rdb LogMiner (RMU
/UNLOAD /AFTER_JOURNAL command).

When using the Oracle Rdb LogMiner feature, existing AIJ files should be backed
up and processed prior to upgrading to this release of Oracle Rdb.

Failure to use the correct version of the Oracle Rdb LogMiner to process an AIJ
file typically results in RMU-W-RECVERDIF warnings when pre-delete record
contents are being processed.

LogMiner AIJ files not compatible

When the Oracle Rdb LogMiner(TM) feature is being used, AIJ files
from this version of Oracle Rdb are not compatible with the Oracle Rdb
LogMiner feature from prior versions of Oracle Rdb. Only the Oracle Rdb
LogMiner feature is affected; AIJ recovery is not affected. If the Oracle
Rdb LogMiner feature is not enabled for a database, there is no difference
in the format or content of an AIJ file.

2.1.19 Excessive Disk I/O for DROP TABLE and TRUNCATE TABLE
Bug 989292

In prior releases of Oracle Rdb, the DROP TABLE and TRUNCATE TABLE
statements performed excessive disk I/O when the table contained LIST OF
BYTE VARYING columns. When this data type is present, these operations must
read the table to locate the LIST data. In prior releases, a DELETE operation
was also performed on the table. While this achieved the delete of the LIST
data, it also caused constraints (and possibly triggers) to be executed as well as
updating indices as each row was deleted.

This problem was corrected in Oracle Rdb7 Release 7.0.4 (but the note was
inadvertently left out of the 7.0.4 Release Notes). The DROP TABLE and
TRUNCATE TABLE statements no longer cause constraints and triggers to be
executed for the table, and indices are no longer updated when processing the
LIST OF BYTE VARYING columns. The result is that I/O required for DROP
TABLE and TRUNCATE TABLE is significantly reduced, especially for tables
stored in UNIFORM format storage areas.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–17

2.1.20 Query Joining Derived Tables of Union Legs With Empty Tables
Returns Wrong Results

Bug 1818374

The following query, joining two derived tables containing union legs with empty
tables, returns wrong results of 0 rows, instead of 1 row.

set flags ’strategy,detail’;
select c1
from (select v1.c1 from

t_02,
(select * from t_01

union all
select * from t_02
) v1
inner join
(select * from tt_01

union all
select * from tt_02
) as v2
on (v1.c1 = v2.c1 and v1.c2 = v2.c2)) as tmp

where tmp.c1 = 110759;
Tables:
0 = T_02
1 = T_01
2 = T_02
3 = TT_01
4 = TT_02

Merge of 1 entries
Merge block entry 1
Cross block of 3 entries
Cross block entry 1
Index only retrieval of relation 0:T_02
Index name T_02_NDX [0:0]

Cross block entry 2
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 1.C1 = 110759
Index only retrieval of relation 1:T_01
Index name T_01_NDX [1:1]
Keys: <mapped field> = 110759

Merge block entry 2
Leaf#01 FFirst 2:T_02 Card=1
Bool: 2.C1 = 110759
BgrNdx1 T_02_NDX [1:1] Fan=17
Keys: <mapped field> = 110759

Cross block entry 3
Conjunct: 1.C1 = 110759
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: (<mapped field> = 3.C1) AND (<mapped field> = 3.C2)
Index only retrieval of relation 3:TT_01
Index name TT_01_NDX [2:2]
Keys: (<mapped field> = <mapped field>) AND (<mapped field> =

<mapped field>)
Merge block entry 2
Conjunct: (<mapped field> = 4.C1) AND (<mapped field> = 4.C2)
Index only retrieval of relation 4:TT_02
Index name TT_02_NDX [2:2]
Keys: (<mapped field> = <mapped field>) AND (<mapped field> =

2–18 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

<mapped field>)
0 rows selected

where the tables are defined as :

! table t_01 is empty
create table t_01 (C1 INTEGER);
create index t_01_ndx on t_01 (C1) ;

! table t_02 has 1 row
create table t_02 (C1 INTEGER, C2 TINYINT);
create index t_02_ndx on t_02 (C1) ;

insert into t_02 values (110759,9);

! table tt_01 is empty
create table tt_01 (C1 INTEGER, C2 TINYINT);
create index tt_01_ndx on tt_01 (C1, C2);

! table tt_02 has 2 rows
create table tt_02 (C1 INTEGER, C2 TINYINT);
create index tt_02_ndx on tt_02 (C1, C2);

insert into tt_02 values (110759,4);
insert into tt_02 values (110759,9);

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query selects the column of a derived table with an equality
predicate.

2. The main derived table joins a non-empty table (t_02) and an inner join.

3. The inner join involves a derived table of union between an empty table (t_01)
and a non-empty table (t_02), and another derived table of union between an
empty table (tt_01) and a non-empty table (tt_02).

As a workaround, the query works if the empty tables are loaded with some data
as in the following example.

insert into t_01 values (110759);

select c1
from (select v1.c1 from

t_02,
(select * from t_01

union all
select * from t_02
) v1
inner join

(select * from tt_01
union all

select * from tt_02
) as v2

on (v1.c1 = v2.c1 and v1.c2 = v2.c2)) as tmp
where tmp.c1 = 110759;

C1
110759

1 row selected

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–19

2.1.21 Left Outer Join Query With OR Predicate Returns Wrong Results
Bug 1837522

The following left outer join query with an OR predicate, having an equality
predicate of a column and a constant value on the left side, and an equality
predicate of a column and a subquery on the right side, returns wrong results. It
should find 3 rows, but it only finds 2 rows.

set flags ’strategy,detail’;
sel job_code, job_start, c1.employee_id, c2.employee_id
from
job_history as c1
left outer join
employees as c2 on (c1.employee_id = c2.employee_id)
where

c1.job_code = ’JNTR’ or
c1.job_start =
(select max(job_start) from job_history as c3)
;

Tables:
0 = JOB_HISTORY
1 = EMPLOYEES
2 = JOB_HISTORY

Cross block of 2 entries
Cross block entry 1
Aggregate: 0:MAX (2.JOB_START)
Get Retrieval by index of relation 2:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]

Cross block entry 2
Conjunct: 0.JOB_START = <agg0
Conjunct: 0.JOB_START = <agg0
Match (Left Outer Join)
Outer loop
Conjunct: (0.JOB_CODE = ’JNTR’) OR (0.JOB_START = <agg0)
Get Retrieval by index of relation 0:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]

Inner loop (zig-zag)
Index only retrieval of relation 1:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

C1.JOB_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID
PRSD 3-Jan-1983 00225 00225
DMGR 3-Jan-1983 00241 00241
2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query is a left outer join between 2 tables with an ON clause.

2. The WHERE clause contains an OR predicate, with the left side branch
being a simple equality predicate on a column, and the right branch using a
sub-query in the equality predicate.

As a workaround, the query works if the left and right side of the OR predicate is
swapped. For example:

2–20 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

sel job_code, job_start, c1.employee_id, c2.employee_id
from
job_history as c1
left outer join
employees as c2
on (c1.employee_id = c2.employee_id)

where
c1.job_start =
(select max(job_start) from job_history as c3)
or
c1.job_code = ’JNTR’
;

C1.JOB_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID
JNTR 2-Jan-1977 00223 00223
PRSD 3-Jan-1983 00225 00225
DMGR 3-Jan-1983 00241 00241
3 rows selected

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.22 Query Using Match Strategy With DISTINCT Function Returns Wrong
Results

Bugs 1891938 and 1894192

A query using the match strategy with the Distinct Function returns the wrong
results, as in the following example.

set flags ’strategy,detail’;
select count(*) from
(select distinct

t1.ACCOUNT_ID,
t1.SECURITY_ID

from T1 t1,
T2 t2

where t1.SECURITY_ID = t2.SECURITY_ID
) as t ;
Tables:
0 = T1
1 = T2

Merge of 1 entries
Merge block entry 1
Reduce: 0.SECURITY_ID, 0.ACCOUNT_ID
Sort: 0.SECURITY_ID(a), 0.ACCOUNT_ID(a)
Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
Match

Outer loop
Sort: 1.SECURITY_ID(a)
Get Retrieval sequentially of relation 1:T2

Inner loop (zig-zag)
Index only retrieval of relation 0:T1
Index name T1_NDX1 [0:0]

ACCOUNT_ID SECURITY_ID
A1 DE0005557508
1 row selected

where the tables are defined as :

create table T1 (
ACCOUNT_ID CHAR (2),
SECURITY_ID CHAR (12));

create index T1_NDX on T1 (ACCOUNT_ID, SECURITY_ID);

create table T2 (SECURITY_ID CHAR (12));

with the following contents:

select SECURITY_ID from T2;

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–21

SECURITY_ID
DE0005128003
DE0005557508
2 rows selected

select ACCOUNT_ID,SECURITY_ID from T1;
ACCOUNT_ID SECURITY_ID
A1 DE0005557508
PP DE0005128003
2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query selects from a derived table.

2. The derived table is the output of a distinct query from T1 and T2 with a join
column predicate.

3. The join column of table T1 is the second segment in index T1_NDX which is
ordered by the first segment ACCOUNT_ID.

4. The order of the join column of table T2 is ascending and different from that
of T2.

As a workaround, the query works if the query outline is used to apply cross
strategy instead of match, as in the following example.

select * from
(select

distinct
t1.ACCOUNT_ID,
t1.SECURITY_ID

from T1 t1,
T2 t2

where t1.SECURITY_ID = t2.SECURITY_ID
) as t ;
~S: Outline "QO_325EFDCDDEBFFFA8_00000000" used
Tables:
0 = T1
1 = T2

Merge of 1 entries
Merge block entry 1
Reduce: 0.ACCOUNT_ID, 0.SECURITY_ID
Sort: 0.ACCOUNT_ID(a), 0.SECURITY_ID(a)
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:T2

Cross block entry 2
Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]

-- Rdb Generated Outline : 31-JUL-2001 11:23
create outline QO_325EFDCDDEBFFFA8_00000000
id ’325EFDCDDEBFFFA85200828890C4E5BA’
mode 0
as (

query (
-- For loop

subquery (
subquery (
T2 1 access path sequential
join by cross to -- <=== change from match to cross

T1 0 access path index T1_NDX
)

)

2–22 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

)
)

compliance optional ;
ACCOUNT_ID SECURITY_ID
A1 DE0005557508
PP DE0005128003
2 rows selected

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.23 GROUP BY Query With SUM Aggregate Returns Wrong Results
Bug 1844260

The following GROUP BY query with SUM aggregate returns wrong results (the
1st row of column ESTADO should be ’A’ instead of ’V’).

set flags ’strategy,detail’;
select estado, sum(total_dep) from bug_view group by estado;
Tables:
0 = T1
1 = T2

Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN ’A’ WHEN (((0.ID_PRODUCTO =

15) OR (0.ID_PRODUCTO = 20)) AND (1.FEC_EXPIRACION <= 20001231)) THEN ’V’
ELSE NULL)(a)

Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match

Outer loop (zig-zag)
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]

Inner loop (zig-zag)
Get Retrieval by index of relation 1:T2
Index name T2_NDX [0:0]

ESTADO
V 15 <=== ESTADO should be ’A’
V 15
2 rows selected

where the view is defined as :

create view bug_view (id_producto, total_dep, estado) as
select

a.id_producto,
case

when a.id_producto = 20 then 20
else 15
end as total_dep,

case
when b.fec_expiracion > 20001231 then ’A’
when (a.id_producto = 15

OR a.id_producto = 20
) and
b.fec_expiracion <= 20001231

then ’V’
end as estado

from opas_saldos_err a, ope_pasiva_err b
where

a.id_producto = b.id_producto ;

with the following content in the tables:

select * From t1;
ID_PRODUCTO

8
1 row selected

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–23

select * From t2;
ID_PRODUCTO FEC_EXPIRACION

8 20000801
8 20010628

2 rows selected

As a workaround, the query works if the predicate "OR a.id_producto = 20" is
commented out from the view, as in the following example.

create view bug_view_good (id_producto, total_dep, estado) as
select

a.id_producto,
case

when a.id_producto = 20 then 20
else 15
end as total_dep,

case
when b.fec_expiracion > 20001231 then ’A’
when (a.id_producto = 15

! OR a.id_producto = 20
) and
b.fec_expiracion <= 20001231

then ’V’
end as estado

from t1 a, t2 b
where

a.id_producto = b.id_producto ;

select estado, sum(total_dep) from bug_view_good group by estado;
Tables:
0 = T1
1 = T2

Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN ’A’ WHEN ((0.ID_PRODUCTO =

15) AND (1.FEC_EXPIRACION <= 20001231)) THEN ’V’ ELSE NULL)(a)
Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match

Outer loop (zig-zag)
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]

Inner loop (zig-zag)
Get Retrieval by index of relation 1:T2
Index name T2_NDX [0:0]

ESTADO
A 15
V 15
2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main query contains a GROUP BY clause and SUM aggregate function.

2. The SUM aggregate function is defined in the view as a CASE expression.

3. The column in the GROUP BY clause is defined in the view as a CASE
expresson which contains the same predicate from the CASE expression of
the SUM aggregate.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2–24 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.1.24 ARBs Exhausted
It was possible for a database to run out of AIJ Request Blocks (ARBs) if many
processes were abnormally terminated. If a process had an ARB allocated at the
time it was terminated, the Database Recovery Process (DBR) would fail to free
the ARB allocated to the process. This problem was introduced in Oracle Rdb7
Release 7.0.1.2.

Symptoms of this problem include:

• Processes looping. RMU/SHOW STATISTICS would show processes stalling
waiting for the AIJ lock or writing the same AIJ block over and over.

• More AIJ activity due to processes flushing the ARBs more often in attempts
to make ARBs available.

• The ‘‘AIJ Journal Information’’ screen displayed by RMU/SHOW STATISTICS
would show available ARB count "(ARB.Avail:)" to be few or none.

To avoid the problem, avoid terminating processes via the DCL STOP
/IDENTIFICATION command. When the problem occurs, the database must
be closed and re-opened on each node where the problem is being seen to reset
the free ARB lists.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.25 CLEAN BUFFER COUNT Parameter Not Obeyed
When the Asynch Batch Write feature is being used, Oracle Rdb7 is supposed to
inspect the tail of the least recently used (LRU) buffer queue to determine if there
are any modified buffers at the end of the queue. The CLEAN BUFFER COUNT
parameter specifies how many buffers are to be inspected. If any are found, then
those buffers are supposed to be written to disk. However, when unmarking
buffers, Oracle Rdb7 would unmark buffers at the end of the modified queue
instead of the LRU queue. That could cause buffers that were just modified to be
immediately written, even if they were the most recently accessed buffers. This
could cause the buffer to have to be modified again and thus written again.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. Instead of
writing the buffers at the tail of the modified queue, Oracle Rdb7 now writes the
modified buffers at the end of the LRU queue.

2.1.26 DETECTED ASYNC PREFETCH THRESHOLD Not Obeyed
The detected async prefetch (DAPF) feature is supposed to initiate async prefetch
(APF) requests if it detects consecutive pages being fetched from a storage area.
The THRESHOLD parameter declares how many consecutive buffers read in a
sequence will trigger an APF request. However, Oracle Rdb7 would not actually
initiate APF requests until the THRESHOLD count plus half the DEPTH number
of buffers were sequentially read.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. DAPF will now
be triggered when THRESHOLD number of consecutive buffers are read in a
sequence.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–25

2.1.27 Page Locks Not Demoted at End of Transaction When FAST COMMIT
Enabled

When using the FAST COMMIT feature, at the end of a transaction, page
locks were not being demoted. Page locks are always demoted at the end
of a transaction when the FAST COMMIT feature is not enabled. In some
applications, demoting page locks at the end of a transaction can significantly
reduce the incidence of deadlocks involving page locks.

This situation has been improved in Oracle Rdb7 Release 7.0.6.2. When the FAST
COMMIT feature is enabled, at the end of a transaction any buffer that does not
contain a modified page will have its page locks demoted.

2.1.28 Incorrect Record Written to AIJ for Ranked Indexes
Under some rare circumstances, an update to a ranked index entry may cause an
incorrectly formatted record to be written to the after image journal, which may
cause problems on subsequent restoration of that index.

This problem may occur if all the following are true:

1. An insert is made into a ranked index that causes a entry to change from
unique to a duplicate.

2. Insufficient room is left on the index node for the insertion causing the index
node to split.

3. Another process requests access to the same page cluster that contains the
node the first process is updating after the time at which the first process
has started making the modifications but prior to the completion of the index
node split.

4. After image journaling is enabled.

This index problem will probably manifest itself as a bugcheck on recovery of this
index from the corrupted AIJ file.

Buchecks will have reference to one or more ranked index routines, ’PSII2*’, for
example:

PSII2SCANGETNEXTBBCDUPLICATE + 00000093

It is not possible to give a complete bugcheck footprint as it depends on the next
action taken on that index during or after restoration.

The following is an example of a index dump of the node affected:

46 14 07 0023 0303 7 bytes stored, 20 byte prefix
0057111111180000080004300484300 pfx ’..............W.’

09800000 pfx ’....’
500F088000BD0F 0308 key ’......W’

0536990617 75 030F overflow pointer 83:432389:22
0002 0315 entry cardinality 2.
0000 0317 leaf cardinality 0.

0600 0C 0317 reference pointer 0:5:-1
0715 031A 1813 byte bitmap containing 3614921436 records

0000 00000005 FFF8 031C duplicate record 0:5:-8
0000 00000005 FFF9 031C duplicate record 0:5:-7
0000 00000005 FFFA 031C duplicate record 0:5:-6
0000 00000005 FFFB 031C duplicate record 0:5:-5
0000 00000005 FFFC 031C duplicate record 0:5:-4

...

2–26 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

Note the incorrect ’bitmap containing’ count and invalid reference pointer and
dbkey values.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.1.29 ROLLBACK Hangs Under DECdtm When Called From an ACMS
CANCEL Procedure

Under certain situations, the CANCEL procedure in an ACMS application would
cause the ACMS server process to hang in the Rdb dispatch layer. This problem
can only occur under the following circumstances:

1. The ACMS application is using 2 phase commit under DECdtm either
explicitly (i.e. with a SYS$START_TRAN call) or implicitly (by attaching to
multiple Rdb databases).

2. The CANCEL procedure contains a SYS$ABORT_TRAN call or ROLLBACK
statement.

3. The ACMS server process has a outstanding pending request which is blocked
(e.g. waiting for rows locked by another user).

If all three of these occured, the ACMS server process would hang in the CANCEL
procedure even after the condition that caused the original blocking cleared.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2 SQL Errors Fixed
2.2.1 Supplied CHR Function Returns Incorrect Value

The CHR function supplied as part of the SQL$FUNCTIONS script incorrectly
returns NULL when the dialect is set to ORACLE LEVEL1, or a zero length
string for other dialects. It should return a CHAR(1) string containing the ASCII
character NUL. The external function definition was causing the zero character
to be interpreted as a C null termination and so Rdb thought the result was an
empty string.

The following SQL commands can be executed to replace the definition of the
CHR external function so that it will return the correct value.

DROP FUNCTION CHR CASCADE;
CREATE FUNCTION CHR (in INTEGER by reference)

RETURNS RDB$ORACLE_SQLFUNC_CHAR_DOM;
EXTERNAL NAME SQL$FNC_CHR
LOCATION ’SQL$FUNCTIONS’
WITH ALL LOGICAL_NAME TRANSLATION
LANGUAGE GENERAL
GENERAL PARAMETER STYLE
NOT VARIANT
COMMENT IS ’Returns the character having the binary equivalent to N. ’;

GRANT EXECUTE ON FUNCTION CHR TO PUBLIC;

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–27

2.2.2 IMPORT DATABASE Did Not Substitute New Collating Sequence
Bug 1695289

In prior releases of Oracle Rdb, IMPORT DATABASE would not handle changes
to the collating sequence as expected.

• Specifying the existing database collating sequence on the IMPORT
DATABASE command line would result in a reported error.

SQL> import database
cont> from COLLATION_70.RBR
cont> filename ’COLLATE_OLD’
cont> collating sequence GERMAN GERMAN;

.

.

.
%SQL-F-NOCOLRES, Unable to import collating sequence GERMAN
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-COLEXTS, there is another collating sequence named GERMAN in this
database

.

.

.

This occurred because SQL would try to retain the old collating sequence in
the database for reference purposes. If there was no change in the collating
sequence name, SQL should have discarded the old definition.

• Specifying a replacement database collating sequence on the IMPORT
DATABASE command line would not cause it to replace the old collating
sequence for domains in the new database.

These problems have been corrected in Oracle Rdb7 Release 7.0.6.2. IMPORT
DATABASE now substitutes the new database collating sequence for the old in
all imported domain definitions and IMPORT no longer generates an error if
the COLLATING SEQUENCE clause re-specifies the existing database collating
sequence.

Note

The original database collating sequence is imported for use in future
domain definitions. If that collating sequence is no longer required, it can
be dropped using the DROP COLLATING SEQUENCE statement.

The following example shows that the collating sequence is now changed by
IMPORT DATABASE.

2–28 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

SQL> create database
cont> filename COLLATE_GERMAN
cont> collating sequence GERMAN GERMAN;
SQL> create domain NAMES_DOM
cont> char(15);
SQL>
SQL> show domain names_dom;
NAMES_DOM CHAR(15)
Collating sequence: GERMAN
SQL>
SQL> export database
cont> alias rdb$dbhandle
cont> into collation_70;
SQL> disconnect all;
SQL>
SQL> import database
cont> from COLLATION_70.RBR
cont> filename ’COLLATE_FRENCH’
cont> collating sequence FRENCH FRENCH;

.

.

.
Database collating sequence was GERMAN, now is FRENCH

.

.

.
IMPORTing table EMPLOYEES
SQL>
SQL> show domain NAMES_DOM
NAMES_DOM CHAR(15)
Collating sequence: FRENCH
SQL>

2.2.3 ALTER TABLE Support Extended for Temporary Tables
In prior releases of Oracle Rdb7, temporary tables were not permitted to be
altered using ALTER TABLE.

ALTER TABLE can now be used on temporary tables to add and drop constraints.
The side effect of this change is that the IMPORT DATABASE command can now
fully import a global or local temporary table that includes constraint definitions.
In prior releases, an error such as this might have been generated.

SQL> import database
cont> from saved_temps
cont> filename new_temps;

.

.

.
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing table EMPLOYEES
IMPORTing table EMPLOYEES_CLONE
%SQL-F-NOCONRES, unable to import constraint
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-WISH_LIST, feature not implemented yet
%SQL-F-NOCONRES, unable to import constraint
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-WISH_LIST, feature not implemented yet
%SQL-F-NOCONRES, unable to import constraint
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-WISH_LIST, feature not implemented yet
SQL>
SQL> show table (constraint) EMPLOYEES_CLONE
Information for table EMPLOYEES_CLONE

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–29

Temporary Global
On commit Preserve rows

Table constraints for EMPLOYEES_CLONE:
No constraints found

Constraints referencing table EMPLOYEES_CLONE:
No constraints found

SQL> disconnect all;

Alter commands which change the record layout are still not allowed. These
include adding and dropping columns and modifying the data type of a column.
However, most other ALTER TABLE operations are now supported for local and
global temporary tables.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2.4 ATOMIC Block Not Rolling Back Changes on Error
In prior versions of Oracle Rdb7, it was possible for updates made within an
ATOMIC compound statement to be saved by COMMIT even when an exception
was raised within that atomic block.

This could happen if INSERT, UPDATE or DELETE was performed by nested
stored procedures which also included calls to nested stored procedures. The
nested calls to procedures were losing the current ATOMIC state of the original
compound statement.

The following simple example shows the code structure in which this problem
could occur.

SQL> create table t1 (f1 int);
SQL>
SQL> create module m1
cont> language sql
cont>
cont> procedure p1;
cont> begin not atomic
cont> insert into t1 values (1);
cont> end;
cont>
cont> procedure p2;
cont> begin not atomic
cont> call p1();
cont> end;
cont>
cont> end module;
SQL>
SQL> -- show that there are now rows
SQL> select * from t1;
0 rows selected
SQL>
SQL> begin atomic
cont> call p2 ();
cont> signal ’ERROR’;
cont> end;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "ERROR"
SQL>
SQL> -- there should still be no rows
SQL> -- due to the failed ATOMIC block
SQL> select * from t1;

F1
1

1 row selected
SQL>

2–30 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

The only workaround is to make the nested stored procedure also use ATOMIC
compound statements.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. The ATOMIC
state of the transaction is now correctly seen by all nested stored procedures.

2.2.5 GROUP BY Queries Fail With INVALID_BLR Error
Bug 1757309

In prior releases of Oracle Rdb7, it was possible to get a INVALID_BLR error
when processing a SELECT expression that used GROUP BY on an expression.

The following example shows the type of query and the resulting error.

SQL> select last_name || first_name,
cont> count(last_name || first_name)
cont> from employees
cont> group by last_name ||first_name;
%RDB-E-INVALID_BLR, request BLR is incorrect at offset 91

This problem is caused by the query processor matching the value expression
(the concatenate of LAST_NAME and FIRST_NAME in the example) within
the aggregate function. This matching should not be performed within aggregate
functions (COUNT, MAX, MIN, AVG, and SUM) since these expressions are filters
on the contributing rows of the group and not references to the final result.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2.6 Using Null Indicators With Dynamic SQL and Compound Statements
Yields Incorrect Results

Bug 1394684

When using compound statements in Dynamic SQL, an attempt to set the null
indicator produced wrong results. Specifically, the parameter marker’s column(s)
would not be set to null.

An example follows:

SQL> create database filename test
SQL> create table test_table (fld1 char (10));
SQL> commit;
SQL> exit;

! A sample C program using Dynamic Sql, parameter markers, and setting the
! null indicator bit.
#include <stdio.h>
#include <string.h>

#define MAX_PARAMS 1

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–31

struct SQLDA_STRUCT
{

char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct
{

short SQLTYPE;
short SQLLEN;
char *SQLDATA;
int *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[MAX_PARAMS];
} *PARAM_SQLDA;

main()
{

long SQLCODE;
char sql_statement[256];
char insert_param[11];
int insert_indicator;

PARAM_SQLDA = malloc((MAX_PARAMS * 44) + 16);
PARAM_SQLDA->SQLN = MAX_PARAMS;

strcpy(sql_statement, "attach ’filename test’");

exec sql execute immediate :sql_statement;

/*
* Insert within an MSP - Null was not inserted correctly
*/
strcpy(sql_statement,"begin ");
strcpy(sql_statement,"insert into test_table (fld1) values (?); ");
strcpy(sql_statement,"end");

/* Prepare the statement */

exec sql prepare sql_statement_id from :sql_statement;

insert_indicator = -1;

PARAM_SQLDA->SQLVAR[0].SQLDATA = insert_param;
PARAM_SQLDA->SQLVAR[0].SQLIND = &insert_indicator;

/* Execute the statement */

exec sql execute sql_statement_id using descriptor PARAM_SQLDA;

! Selecting from the table shows incorrect results.
select * from test_table;
FLD1
..........
1 row selected

.

.

.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. When using
a compound statement in Dynamic SQL, assigning "-1" to the indicator field
(SQLIND) in the SQLDA now sets the associated column to NULL.

The following example shows the correct results:

2–32 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

select * from test_table;
FLD1
NULL
1 row selected

.

.

.

2.2.7 Using the CALL Statement in Dynamic SQL Results in Input Parameters
Not Being Written to SQLDA

Bug 1324098

When using the CALL statement to invoke a stored procedure in Dynamic SQL,
input parameters were not written to the SQLDA. In addition, parameters which
were defined without an access mode, that is, without IN, OUT, or INOUT, were
also not written to the SQLDA.

The problem did not occur when using the MSP (multistatement procedure)
CALL statement; that is the CALL statement within a BEGIN...END statement.

The following example uses interactive SQL to create a MODULE and then CALL
the stored procedure. This works properly.

SQL>create data file test;
SQL> create module test_module language sql
cont> procedure test_param (:x int, :test_string char(32), out :status int);
cont> begin
cont> set :status = 4;
cont> end;
cont> end module;
SQL> commit;
SQL> declare :s_status int;
SQL> declare :v_user char (32);
SQL> declare :xx int;
SQL> begin
cont> set :v_user = ’TESTUSER’;
cont> SET :xx = 123;
cont> call test_param (:xx, :v_user, :s_status);
cont> end;
SQL> print :s_status;

S_STATUS
4

SQL> exit

The next example uses a Dynamic program to attach to the database and then
CALL the stored procedure. This is an internal program which, when run, shows
input and output parameters written to the SQLDA.

The first example illustrates correct behavior using the MSP CALL statement.
The second example illustrates incorrect behavior using the simple CALL
statement. Note that, in the second example, there are no IN parameters written
to the SQLDA (ie. there is no IN:)

Example 1:

$ run dyntest
Enter statement:
attach ’filename test’;
Enter statement:
begin call test_param (?,?,?); end;
in: 0: 10001
in: 1: 20001
out: 0: 30005

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–33

Example 2:

Enter statement:
call test_param (?,?,?);
out: 0: 30005

The problem has been fixed. Both input parameters as well as parameters
defined without an access mode are now correctly written to the SQLDA.

Enter statement:
call test_param (?,?,?);
in: 0: 10001
in: 1: 20001
out: 0: 30005

The following example illustrates the error message generated when using
Powerbuilder. This error message should no longer occur.

string ls_string
long ll_zahl

ll_zahl = 55
ls_string = ’EGE’
DECLARE test procedure for test_param :ll_zahl, :ls_string, output using sqlca;

long ll_status
//Execute
ll_status = -1
execute test ;
if sqlca.sqlcode <> 0 then

messagebox (’execute’, ’Error’ + sqlca.sqlerrtext)
end if
fetch test into :ll_status;
commit;

sle_1.text = string (ll_status)

ODBC - Error Msg

S1093 Invalid Parameter Number

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2.8 New Minimum Value for the INTERVAL Leading Precision
In prior releases of Oracle Rdb, the minimum value for the interval leading
precision was restricted to two digits. This restriction has been removed. An
interval leading precision of 1 is now supported.

The following example shows the support for the lower precision value.

SQL> create table TIME_CLOCK
cont> (employee_id char(5),
cont> clock_on timestamp (2),
cont> clock_off timestamp (2),
cont> shift_duration
cont> computed by (clock_off - clock_on) hour (1) to minute);
SQL>
SQL> show table (column) TIME_CLOCK
Information for table TIME_CLOCK

2–34 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

Columns for table TIME_CLOCK:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5)
CLOCK_ON TIMESTAMP(2)
CLOCK_OFF TIMESTAMP(2)
SHIFT_DURATION INTERVAL

HOUR (1) TO MINUTE
Computed: by (clock_off - clock_on) hour (1) to minute

As in previous releases, if no precision is provided then a default of 2 digits will
be used.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2.9 Command Line Recall Expanded to 255 Lines
In prior releases of Oracle Rdb, the command line recall was limited to the last
20 lines. This limit has been lifted to 255 (the maximum supported by OpenVMS)
for this release of Rdb.

If more recall is required, SQL provides the EDIT command to edit whole
statements. This interface currently saves the last 20 commands for edit, but the
SET EDIT KEEP statement can be used to expand this number.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.2.10 Incorrect Processing of CASE Expression
Bug 850442

In prior releases of Oracle Rdb, the SQL interface incorrectly processed CASE
expressions which included statististical functions (i.e. COUNT, MAX, MIN, AVG
and SUM).

The following example, which imbeds statistical functions in a CASE expression,
caused Rdb to bugcheck:

select
case

when count(employee_id) >= 1
then ’1’

when count(employee_id) = 0
then ’2’

else ’3’
end

from employees;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file USER2:[TEST]RDSBUGCHK.DMP;
%SQL-I-BUGCHKDMP, generating bugcheck dump file USER2:[TEST]SQLBUGCHK.DMP;
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=0000000000000098, PC=000000000038B948, PS=0000001B

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

This improved handling of statistical functions also corrects some query
strategies. The following example implements a simple ABS functionality.
Due to the erroneous handling of the statistical function, an extra subselect was
present as shown in the optimizer STRATEGY display.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–35

SQL> set flags ’strategy’;
SQL> select
cont> case
cont> when AVG (salary_amount) < 0 then - AVG (salary_amount)
cont> else AVG (salary_amount)
cont> end
cont> from SALARY_HISTORY;
Cross block of 2 entries
Cross block entry 1
Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

Cross block entry 2
Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

2.652896707818930E+004
1 row selected

The corrected SQL query now only requires a single table access.

Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

2.652896707818930E+004
1 row selected

Applications that encounter this type of unexpected optimizer strategy will need
to be recompiled and stored procedures and functions will need to be recreated.

2.2.11 %RDB-E-NO_DIST_BATCH_U Error When Executing SET
TRANSACTION

Bug 1921672

If a SET TRANSACTION statement was executed to start a distributed
transaction (2 phase commit) and which specified certain table partitions, an
error was inappropriately returned. Specifically, if partition 14 was named,
Rdb would return a %RDB-E-NO_DIST_BATCH_U error and not start the
transaction. For example, suppose an Interactive SQL session has two databases
attached (this implicitly starts a DECdtm distributed transaction), the following
SQL commands would fail as shown:

SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED -
RESERVING DB2.MY_TABLE PARTITION(14) FOR EXCLUSIVE WRITE;
%RDB-E-NO_DIST_BATCH_U, no distributed transaction is allowed with the
recovery mechanism disabled

This query will now execute normally and start a distributed transaction.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3 Oracle RMU Errors Fixed
2.3.1 RMU/Extract Fails to Extract IMPORT Script from Multischema Database

RMU/Extract would produce an error when attempting to extract an IMPORT
script from a multischema database. The following example shows the error
which occurs from this attempt.

2–36 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

$ rmu/extract/item=import sample.rdb
-- RMU/EXTRACT for Oracle Rdb V7.0-4 16-FEB-2001 08:39:25.25
--
-- Physical Database Definition
--
--
import database from rmuextract_rbr

filename ’DEVICE:[DATABASE]SAMPLE.RDB’
protection is ACL
multischema is ON

%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU-F-FTL_RMU, Fatal error for RMU operation at 16-FEB-2001 08:39:27.71

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. The only
workaround is to edit the output from the /ITEM=DATABASE command which
has a similar format.

2.3.2 RMU/Extract May Abort with ACCVIO and Bugcheck
Bugs 1314250, 1368926, 638001, 1644617

In prior releases of Oracle Rdb on OpenVMS Alpha, RMU/Extract may abort with
an unexpected error and generate a bugcheck. This is shown in the following
example:

$ rmu/extract/item=all/out=t.t dba_database
%COSI-F-UNEXPERR, unexpected system error
-SYSTEM-F-ACCVIO, access violation, reason mask=8C, virtual
address=000000000000001B, PC=0000000000000003, PS=7AD99FF8
%RMU-F-FATALOSI, Fatal error from the Operating System Interface.
%RMU-F-FTL_RMU, Fatal error for RMU operation at 15-FEB-2001 11:13:15.93

Oracle believes this is related to a flaw in the OpenVMS runtime library routine
LIB$CVT_DX_DX in use by RMU/Extract. Access to an unaligned source buffer
is the most likely cause of this error.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. Rdb now uses
a quadword aligned buffer for conversions. A workaround for the current Rdb
releases may be to upgrade to a corrected version of OpenVMS. Please contact
COMPAQ Customer Support for further details.

2.3.3 RMU/Extract /ITEM=WORKLOAD Generates Incomplete Output
In prior releases of Oracle Rdb, the RMU/Extract /ITEM=WORKLOAD command
would cause an incomplete script to be generated. This occurred when the
workload column group consisted of more than one column.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.4 RMU Commands May Leave Zero Length Log File
In prior releases of Oracle Rdb, several RMU commands would open the file
specified by /LOG prior to completing checks on other qualifiers. This could cause
a zero length file to be created by a failing RMU command.

These commands have been corrected: RMU Collect Optimizer_Statistics, RMU
Delete Optimizer_Statistics, RMU Insert Optimizer_Statistics, and RMU Show
Optimizer_Statistics.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–37

2.3.5 %RDB-E-INVALID_BLR When Group By Count(*)
Bug 1484666

The COUNT() aggregate function may not be used in the GROUP BY clause of a
SELECT statement, but a query containing the COUNT() function in a GROUP_
BY clause returned an inappropriate error message as shown in the following
example:

SQL> select count(*) from employees
cont> group by count(*);
%RDB-E-INVALID_BLR, request BLR is incorrect at offset 44

This query will now return the following error message:

%SQL-F-INVFUNREF, Invalid function reference

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.6 Full Logical Area Name Displayed in Zoom Screen
In previous versions of Oracle Rdb, RMU /SHOW STATISTICS was unable to
display the full logical area name and storage area name in the Logical Area
Overview ‘‘View’’ screen if the length of the logical area and storage area exceeded
approximately 40 characters.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. RMU /SHOW
STATISTICS now displays the Logical Area Overview ‘‘View’’ screen with the
right edge of the view screen tied to the width of the display. Setting the display
wider (to 132 columns, for example) allows the full logical area name and storage
area name to be displayed.

2.3.7 RMU /UNLOAD Specifying Both /VIRTUAL and /RECORD_DEFINITION
Previously, the RMU /UNLOAD command qualifier VIRTUAL_FIELDS could
only be specified if the RECORD_DEFINITION qualifier was also specified. This
restriction prevented unloading certain classes of data (database keys within
views, for example) into the specially structured file format that contains both the
data and the metadata (.unl).

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. The VIRTUAL_
FIELDS qualifier is now permitted regardless of the setting of the RECORD_
DEFINITION qualifier.

2.3.8 RMU /SET AFTER_JOURNAL /SWITCH and Automatic Backup Server
Does Not Backup All Journals

Bug 1614198

When using the Automatic Backup Server (ABS) process, if multiple after-
image journal files were eligible for backup, it was possible that not all journals
would be backed up when the next ABS was started as a result of an after
image journal switch. This problem would be most apparent when the ABS was
suspended through multiple AIJ switch operations.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. During an after
image journal switch operation, one ABS process is started for each AIJ file that
needs to be backed up. These ABS processes operate in parallel with each other
performing a backup from one AIJ file to a backup AIJ file based on the backup
file specification. This represents a difference in behavior from prior versions
where one ABS would backup all eligible AIJ files to a single AIJ backup file
regardless of the setting of the backup file specification.

2–38 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.3.9 RMU /VERIFY Constraint Reports Erroneous Error
Bug 1575187

The RMU /VERIFY of constraints on OpenVMS Alpha could sometimes cause a
constraint violation error when the data was in fact valid. This is shown in the
following example.

$ rmu/verify/constraint constr_test
%RMU-I-CONSTFAIL, Verification of constraint "LI_CONSTRAINT" has failed.

Only constraints with expressions such as CASE would fail for this reason.
Verification of this type of constraint would always fail on OpenVMS Alpha.

Verification of the same constraint on OpenVMS VAX would succeed.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.10 RMU/DUMP/AFTER /START and /END Qualifiers are Difficult to Use
The /START and /END qualifiers for the RMU/DUMP/AFTER_JOURNAL utility
can be difficult to use as users seldom know, nor can they determine, the AIJ
record number in advance of using the utility.

There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. The
RMU/DUMP/AFTER_JOURNAL utility has been enhanced to provide more
advanced selection criteria. Three new optional qualifiers, /FIRST=select_list,
/LAST=select_list and /ONLY=select_list have been added.

The "select_list" of these qualifiers consists of a list of one or more of the following
keywords:

• TSN=tsn : Specifies the first, last or specific TSN in the AIJ journal, using
the standard ‘‘[n:]m’’ TSN format.

• TID=tid : Specifies the first, last or specific TID in the AIJ journal.

• RECORD=record# : Specifies the first or last record in the AIJ journal. This
is the same as the existing /START and /END qualifiers, which are still
supported, but obsolete.

This keyword cannot be used with the /ONLY qualifier.

• BLOCK=block# : Specifies the first or last block in the AIJ journal.

This keyword cannot be used with the /ONLY qualifier.

• TIME=date_time : Specifies the first or last date/time in the AIJ journal,
using the standard date/time format.

This keyword cannot be used with the /ONLY qualifier.

• TYPE=(aijtype) : Specifies the AIJ journal record types to dump. One or more
‘‘aijtype’’ keywords may be specified. Valid ‘‘aijtype’’ keywords are:

• ACE_HEADER - TYPE=A records

• CHECKPOINT - TYPE=B records

• CLOSE - TYPE=K records

• COMMIT - TYPE=C records

• DATA - TYPE=D records

• GROUP - TYPE=G records

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–39

• INFORMATION - TYPE=N records

• OPEN - TYPE=O records

• OPTIMIZE_INFORMATION - TYPE=I records

• PREPARE - TYPE=V records

• ROLLBACK - TYPE=R records

This keyword can only be used with the /ONLY qualifier.

The /FIRST, /LAST and /ONLY qualifiers are optional. You may specify any or
none of them.

The keywords specified for the /FIRST qualifier can differ from the keywords
specified for the other qualifiers.

For example, to start the dump from the fifth block of the AIJ journal, you would
use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=5) MF_PERSONNEL.AIJ

To start the dump from block 100 or TSN 52, whichever occurs first, you would
use the following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=100,TSN=0:52) MF_PERSONNEL.AIJ

When multiple keywords are specified for a qualifier, the first condition being
encountered activates the qualifier. In the above example, the dump will start
when EITHER block 100 or TSN 52 is encountered.

NOTE

Be careful when searching for TSNs or TIDs, as they are NOT ordered
in the AIJ journal. For example, if you want to search for a specific TSN
then use the /ONLY qualifier, not the /FIRST and /LAST qualifiers.

For example, assume the AIJ journal contains records for TSN 150, 170 and 160
(in that order). If you specify the /FIRST=TSN=160 and /LAST=TSN=160
qualifiers, nothing will be dumped because the TSN 170 will match the
/LAST=TSN=160 criteria.

2.3.11 RMU/LOAD FILACCERR Exception While Reading Input File
Previously, if an error occurred while reading an input file, the RMU /LOAD
utility would signal a FILACCERR exception along with the RMS ‘‘STS’’ value.
However, the RMS ‘‘STV’’ field was not displayed thus limiting some information
about the actual cause of the failure.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. RMU /LOAD
now displays both the RMS ‘‘STS’’ and ‘‘STV’’ values during a file read failure
condition.

2–40 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.3.12 RMU/LOAD Access Violation When Table Constraints Were Defined
An access violation occurred when RMU/LOAD was loading data in a table with
table constraints defined.

The following example shows that an access violation occurred in RMU/LOAD
when table constraints were defined for the table being loaded.

$ RMU/LOAD DBA_DATABASE EMP EMP.UNL

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual

address=00000000026EDFF1, PC=FFFFFFFF8089D778, PS=0000001B

%RMU-I-BUGCHKDMP, generating bugcheck dump file

DB_USER:[USER]RMUBUGCHK.DMP

%RMU-I-DATRECSTO, 0 data records stored.

%RMU-F-FTL_LOAD, Fatal error for LOAD operation at 16-JAN-2001 16:20:07.33

As a workaround to this problem, specify /NOCONSTRAINTS when doing the
RMU/LOAD.

RMU/LOAD/NOCONSTRAINTS DBA_DATABASE EMP EMP.UNL

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.13 RMU/UNLOAD/AFTER_JOURNAL CPU Loop With Large Fragmented
Record

Previously, it was possible for a row fragment larger than approximately 1500
bytes to cause the RMU /UNLOAD /AFTER_JOURNAL command to become
wedged in a CPU loop. The RMU/UNLOAD/AFTER_JOURNAL utility was
incorrectly processing this type of record in some cases and could continuously
search an internal queue while looking for a non-existent row fragment.

This problem has been resolved in Oracle Rdb7 Release 7.0.6.2. The maximum
size of an internal sort buffer has been increased to allow for any possible
fragmented record size. In addition, an estimate is made of the largest likely
record size to be extracted and this size is used as a ‘‘hint’’ while calculating the
record sort size. Finally, an additional sanity check has been included to prevent
an endless loop while searching for fragments. When a fragment is not found
within a transaction, the RMU/UNLOAD/AFTER_JOURNAL utility will now
cause a bugcheck dump rather than looping indefinitely.

2.3.14 RMU/VERIFY/INDEX/TRANS=READ_ONLY Did Not Detect BADIDXREL
Bug 1773334

When RMU/VERIFY/INDEX/TRANSACTION=READ_ONLY verified an index
with a bad pointer to a data record, it failed to detect the problem and to
output the RMU-W-BADIDXREL message. If /TRANSACTION=PROTECTED
(the default transaction mode) or /TRANSACTION=EXCLUSIVE was
specified, the problem was detected and the RMU-W-BADIDXREL message
was output. This problem has been corrected and if RMU/VERIFY/INDEX
/TRANSACTION=READ_ONLY is specified, the bad index data record pointer
will be detected and the RMU-W-BADIDXREL message will be output.

The following example shows that RMU/VERIFY/INDEX
/TRANSACTION=READ_ONLY failed to detect the bad record pointer in the
TABLE_1_INDEX index, but if the transaction mode specified was PROTECTED

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–41

(the default) or EXCLUSIVE, the bad index pointer was detected and the
RMU-W-BADIDXREL message was output.

$RMU/VERIFY/INDEX/TRANSACTION=READ_ONLY BADINDEX.RDB

$RMU/VERIFY/INDEX BADINDEX.RDB
%RMU-W-BADIDXREL, Index TABLE_1_INDEX either points to a non-existent record
or has multiple pointers to a record in table TABLE_1.
The logical dbkey in the index is 121:1894:10.

$RMU/VERIFY/INDEX/TRANSACTION=PROTECTED BADINDEX.RDB
%RMU-W-BADIDXREL, Index TABLE_1_INDEX either points to a non-existent record
or has multiple pointers to a record in table TABLE_1.
The logical dbkey in the index is 121:1894:10.

$RMU/VERIFY/INDEX/TRANSACTION=EXCLUSIVE BADINDEX.RDB
%RMU-W-BADIDXREL, Index TABLE_1_INDEX either points to a non-existent record
or has multiple pointers to a record in table TABLE_1.
The logical dbkey in the index is 121:1894:10.

As a workaround to this problem, do not specify /TRANSACTION=READ_ONLY
with the RMU/VERIFY/INDEX command.

$RMU/VERIFY/INDEX BADINDEX.RDB
%RMU-W-BADIDXREL, Index TABLE_1_INDEX either points to a non-existent record
or has multiple pointers to a record in table TABLE_1.
The logical dbkey in the index is 121:1894:10.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.15 RMU /UNLOAD Closes .RRD File Earlier
Previously, the RMU /UNLOAD command did not close the generated record
definition (.RRD) file until the end of the entire unload operation. This could be
inconvenient when passing the record definition to another application through,
for example, an OpenVMS mailbox.

The RMU /UNLOAD command now closes the .RRD file as soon as it has been
written. This allows other utilities to read the .RRD file as soon as it has been
created and written.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.16 RMU /UNLOAD /AFTER_JOURNAL Requires Accurate AIP Logical Area
Information

The RMU /UNLOAD /AFTER_JOURNAL command uses the on-disk area
inventory pages (AIPs) to determine the appropriate ‘‘type’’ of each logical area
when reconstructing logical DBKEYs for records stored in mixed-format storage
areas. However, the logical area ‘‘type’’ information in the AIP is generally
‘‘unknown’’ for logical areas created prior to Oracle Rdb V7.0.1. If the RMU
/UNLOAD /AFTER_JOURNAL command cannot determine the logical area type
for one or more AIP entries, a warning message is displayed for each such area
and may ultimately return logical DBKEYs with a ‘‘0’’ (zero) area number for
records stored in mixed-format storage areas.

In order to update the on-disk logical area type in the AIP, the RMU /REPAIR
utility must be used. The ‘‘/INITIALIZE = LAREA_PARAMETERS = (optionfile)’’
qualifier option file can be used with the ‘‘/TYPE’’ qualifier. For example, to repair
the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

2–42 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

For partitioned logical areas, the /AREA=name qualifier can be used to identify
the specific storage areas that are to be updated. For example, to repair the
EMPLOYEES table of the MF_PERSONNEL database for the EMPID_OVER
storage area only, you would create an options file that contains the following
line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The /TYPE qualifier specifies the type of a logical area. The following keywords
are allowed:

Table 2–1 Valid /TYPE keywords

Keyword Meaning

TABLE Specifies that the logical area is a data table. This would be a table created using the
SQL ‘‘CREATE TABLE’’ syntax.

BTREE Specifies that the logical area is a b-tree index. This would be an index created using
the SQL ‘‘CREATE INDEX TYPE IS SORTED’’ syntax.

HASH Specifies that the logical area is a hash index. This would be an index created using the
SQL ‘‘CREATE INDEX TYPE IS HASHED’’ syntax.

SYSTEM Specifies that the logical area is a system record which is used to identify hash buckets.
Users cannot explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This
type does NOT identify system relations.

BLOB Specifies that the logical area is a blob repository.

There is no explicit error checking of the ‘‘type’’ specified for a logical area.
However, an incorrect type may cause the RMU /UNLOAD /AFTER_JOURNAL
command to be unable to correctly return valid logical DBKEYs.

2.3.17 Asterisks Displayed for STID on >99 Attaches in RMU/SHOW
STATISTICS

Bug 1704207

When the streamid (STID) increases beyond 99, display of the PID:STID in the
RMU/SHOW Statistics screens is faulty. STID >99 is not displayed correctly
unless one zooms in.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2. Now "**" are
shown in RMU/SHOW statistics screens when the STID is >99. The user can
zoom in and see the actual value.

2.3.18 RMU/SHOW STATISTICS Displays Physical Area Name for Page Lock
When possible, the RMU/SHOW STATISTICS ‘‘LockID’’ pop-up screen now
displays the physical area name of the storage area along with the area number
for page locks.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–43

The following example shows the storage area name (RDB$SYSTEM) being
displayed.

+--+
| |
| Resource: page 3272 (area 1 RDB$SYSTEM) |
| State... Process.ID Process.name... Lock.ID. Rq Gr Queue |
| |
| Blocker: 21E74357 njl @ TNA455 660100A7 EX Grant |
| Waiting: 21E6E356 njl @ TNA454 5C00DCFC CR Wait |
| |
+--+

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.19 RMU/SHOW STATISTICS Incorrect AIJ CurrEOF Value
Previously, the RMU/SHOW STATISTICS Utility would sometimes display an
incorrect value of 2 for the current AIJ file EOF. This could happen when the AIJ
end-of-file location had not been established on the current node.

Now, when the AIJ end-of-file location is not accurately known, the RMU/SHOW
STATISTICS utility indicates "Unknown" for the CurrEOF column of the ‘‘AIJ
Journal Information ’’ screen as shown in the following example.

Node: SLAM (1/1/1) Oracle Rdb X7.0-00 Perf. Monitor 26-JUN-2001 10:11:08.16
Rate: 3.00 Seconds AIJ Journal Information Elapsed: 00:03:30.91
Page: 1 of 1 DUA0:[DB]DB.RDB Mode: Online

Journaling: enabled Shutdown: 60 Notify: disabled State: Accessible
ALS: Manual ABS: disabled ACE: disabled FC: enabled CTJ: disabled
ARB.Count: 300 ARB.Avail: 300 SwtchSched: 0 NxtSwtch:
After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State......
J1 Unused 5000 Empty Latent Accessible
J2 11 5000 Unknown Current Accessible
J3 Unused 5000 Empty Latent Accessible
J4 Unused 5000 Empty Latent Accessible
J5 Unused 5000 Empty Latent Accessible

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.20 RMU /UNLOAD /AFTER_JOURNAL Excessive Work File I/O
Previously, the RMU /UNLOAD /AFTER_JOURNAL Utility would access work
files more often than needed. This additional disk I/O could greatly increase the
amount of time required to extract certain classes of AIJ files.

Several performance enhancements have been included to reduce disk I/O by
buffering and sorting additional information in memory. Previously, up to 512
records would be sorted using an internal sort algorithm (thus avoiding calling
the VMS SORT32 package). This threshold has been increased to 5000 records.
The per-transaction work file memory buffer size has also been significantly
increased. These changes may require additional process working set to avoid
excessive page faulting.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2–44 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

2.3.21 RMU/Extract Not Formatting View Column Expressions Correctly
Bug 1832240

In prior releases of Oracle Rdb, the RMU/Extract command did not correctly
format VIEW definitions that contained computed expressions in the SELECT
clause, such as that shown below.

create view V1 (F3) as
select sum (F3 /

case (select cast (F1 as integer) from T1
where F2 = ’STR_VALUE’)

when 0 then 1
when 1 then 10
when 2 then 100
when 3 then 1000
when 4 then 10000
when 5 then 100000
else 0

end)
from T2;

This example was extracted and the results are shown below: note the lack of
formatting in the expression and the missing separating white space. This made
the generated definition illegal.

create view "V1"
(F3) as
select

sum((C2.F3 / case (select CAST(C3.F1 AS INTEGER) from T1 C3where (C3.F2 =
’STR_VALUE’)) when 0 then 1 when 1 then 10 when 2 then 100 when 3 then 1000
when 4 then 10000 when 5 then 100000 else 0end)) from T2 C2;

The only workaround for this problem is to manually edit the definition after
extracting with RMU/Extract or revert to the original view source.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.22 Recovery Journals With Only Rollback Records Not Handled Correctly
Bug 1544303

When applying a roll forward journal which contained only a rollback record, the
highest TSN in the database was incorrectly set in the TSN block. As a result,
the first committed record in the next roll forward journal was being ignored,
since the recover code did not consider the next transaction applied to the current
recovery.

There is no workaround to this problem, other than to try and avoid journals
which conatin only the rollback transaction.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.2.

2.3.23 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records Clarification
The RMU /UNLOAD /AFTER_JOURNAL Utility uses additional CPU and
memory resources while processing and unloading fragmented records from the
after-image journal file. As record fragments are found within a transaction, they
are buffered, in memory, on a "fragment" queue. After all non-fragmented records
from the transaction have been output, the fragmented records are reconstructed
and output.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2 2–45

Because the fragments are buffered in memory, additional process page file quota
may be required when unloading transactions that have a large number of record
fragments. Also, additional process working set quota may be required in order
to limit process page faulting.

2–46 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.2

3
Software Errors Fixed in Oracle Rdb7 Release

7.0.6.1

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.6.1.

3.1 Software Errors Fixed That Apply to All Interfaces
3.1.1 Excessive Pages Checked/Discarded When Storing New Rows

Bug 1391003

Oracle Rdb7 would sometimes not use a page for storing a new row even though
there was sufficient space on the page to store the new row. This would only
happen when there was sufficient locked space on the page to store the data
portion of the row, but insufficient free space to create the line and transaction
index (LDX/TDX) entries on the page. Oracle Rdb7 would reject the page and
continue checking pages until it found a page that had enough free space to store
the LDX/TDX entries.

‘‘Locked space’’ is space that is reserved to a specific database attach (user) and
cannot be reclaimed by any other user until the user that has it locked no longer
needs it; ‘‘free space’’ is available space that is not reserved to any particular
database attach.

This problem was more likely to occur in storage areas that had been carefully
sized. In that situation, it was common to have sufficient locked space on a page
to store the row data and the LDX/TDX entries, but have no free space available.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. When necessary,
Oracle Rdb7 will utilize locked space when allocating LDX/TDX entries.

3.1.2 Quota Exceeded Conditions During DAPF May Lead To Missing Updates
Bug 1485622

When the Detected Asynchronous Prefetch (DAPF) feature is enabled, it is
possible for certain process quota exceeded conditions to result in potential data
loss. If a Detected Asynchronous Prefetch I/O request fails due to an exceeded
quota error, a database page within the process buffer pool may be errantly
released. This can lead to database record modifications or additions being lost.

Workarounds include disabling the Detected Asynchronous Prefetch feature. The
logical name RDM$BIND_DAPF_ENABLED can be defined to a value of "0" to
disable Detected Asynchronous Prefetch.

Further, accounts and processes that access Oracle Rdb databases should be
reviewed to ensure that various quotas are set to ensure high levels of I/O
performance. Table 3–1 lists suggested quota values for maximum performance of
Rdb I/O operations.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–1

Table 3–1 Recommended Minimum Process Quotas

Quota Setting

DIOLM Equal to or greater than the count of database buffers (either the
database default or the setting of the logical name RDM$BIND_
BUFFERS) when local buffers are enabled for a database or a value
greater than the global buffer USER LIMIT setting. Minimum of 250.

BIOLM Equal to or greater than the setting of DIOLM.

ASTLM Equal to or greater than 50 more than the setting of DIOLM.

BYTLM Depending on the amount of asynchronous I/O activity, this may need
to be equal to or greater than 512 times the database buffer size times
one quarter the value of database buffers (either the database default
or the setting of the logical name RDM$BIND_BUFFERS) when local
buffers are enabled for a database or a value greater than the global
buffer USER LIMIT setting. Based on a 12 block buffer size and the
desire to have a process have up to 40 asynchronous I/O requests
outstanding (either reading or writing), the minimum suggested value
is 250,000.

WSQUOTA,
WSEXTENT

Large enough to avoid excessive page faulting.

FILLM 25 more than the count of database storage areas and snapshot storage
areas.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. An exceeded
quota error during a Detected Asynchronous Prefetch I/O request is handled by
simply dismissing the request and not attempting to clean up the buffer pool. The
result is that the asynchronous prefetch request is ignored (because the process
does not have the quotas required to initiate the I/O), but the desired page will
ultimately be read from disk synchronously.

3.1.3 Bugcheck at LCKCCH$LOCK_RET_NOT_OK During Hash Index Creation
Bug 1430433

When the logical name RDMS$CREATE_LAREA_NOLOGGING is defined to
"1", certain cases of failure to create a hashed index due to incorrect reserving
of storage areas may cause a CREATE INDEX statement to cause a bugcheck
dump:

$ DEFINE RDMS$CREATE_LAREA_NOLOGGING "1"
$ SQL$
SQL> attach data file ’DUA0:[DB]DB’;
SQL> declare transaction read write reserving T1 for exclusive write;
SQL>
SQL> create unique index T1I on T1 (C1, C2, C3) type is HASHED store in A1;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-DATACMIT, unjournaled changes made; database may not be recoverable
-RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
SQL>
SQL> create index T2I on T2 (C1) type is HASHED store in A2;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file DUA0:[DB]RDSBUGCHK.DMP;

The bugcheck dump contains a call stack similar to the following:

3–2 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","-F-","-E-"
***** Exception at 00924930 : LCKCCH$LOCK_RET_NOT_OK + 000000F0
%RDMS-F-NOT_LARDY, area for 54:2:0 not in proper ready mode
Saved PC = 00894358 : DIOFETCH$FETCH_ONE_LINE + 00000208
Saved PC = 00895088 : DIO$FETCH_DBKEY + 000002D8
Saved PC = 00952DC0 : PSI$MODIFY_PCL_ALL + 00000090
Saved PC = 0033E2B4 : SOR$$GET_KEY_PREFIX + 00000A84
Saved PC = 0033E898 : DIODROPDROPMIXEDAREA + 00000308
Saved PC = 008B3330 : DIOLAREA$ERASE_MIXED_LAREA + 00000210
Saved PC = 008B0ED0 : DIOLAREA$DELETE_LAREA + 00000180
Saved PC = 009AB35C : DIOUN$CRLA + 0000057C
Saved PC = 009A9D60 : DIO$UN_DO + 000001C0
Saved PC = 0097661C : RUJUTL$ROLLBACK_LOOP + 000004CC
Saved PC = 00973700 : RUJ$VERB_ROLLBACK + 00000080
Saved PC = 008D84F0 : KOD$VERB_FAILURE + 000000D0
Saved PC = 006C7688 : RDMS$$TOP_DSDI_CLEANUP + 000000A8
Saved PC = 006C70E4 : RDMS$$TOP_DSDI_HNDLR + 00000174
Saved PC = 808A3D94 : symbol not found
Saved PC = 958746BC : symbol not found
***** Exception at 006A83C0 : RDMS$$KOD_INT_READY + 000001D0
%RDMS-F-NOT_LARDY, area for 54:2:0 not in proper ready mode
Saved PC = 006F7748 : RDMS$$EXE_OPEN + 00000E28
Saved PC = 006F6AA0 : RDMS$$EXE_OPEN + 00000180
Saved PC = 006F69D0 : RDMS$$EXE_OPEN + 000000B0
Saved PC = 006F82B4 : RDMS$$EXE_OPEN + 00001994
Saved PC = 0466EAB4 : symbol not found
Saved PC = 0082C688 : RDMS$$INT_START_REQUEST + 00000098
Saved PC = 00470818 : RDMS$$COUNT_RELATION + 000001E8
Saved PC = 004D56A4 : RDMS$$CREATE_INDEX_INFO + 00003F74
Saved PC = 004596B8 : RDMS$$RELEASE_DDL_VM_HNDLR + 00001058
Saved PC = 003C25A4 : BLI$CALLG + 000000BC
Saved PC = 008D55F0 : KOD$SETSTK_AND_CONTINUE + 00000184

This problem was caused by the transaction rollback "UNDO" code not correctly
accessing a logical area for system records. Unfortunately, the database recovery
(DBR) process would fail in the same fashion. In most cases, the process that
originally failed would be terminated when the DBR process did not complete
correctly.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. The logical
area for the system records is now readied in the correct mode prior to UNDO
processing. The correct error, UNRES_REL, is now returned:

SQL> declare transaction read write reserving T1 for exclusive write;
SQL>
SQL> create unique index T1I on T1 (C1, C2, C3) type is HASHED store in A1;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-DATACMIT, unjournaled changes made; database may not be recoverable
-RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
SQL>
SQL> create index T2I on T2 (C1) type is HASHED store in A2;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-UNRES_REL, relation T2 in specified request is not a relation reserved
in specified transaction

SQL>

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–3

3.1.4 Attempts to Truncate Snapshot Files Online Hang
Bug 563410

Attempts to truncate snapshot files while there were transactions active in the
database would hang until all database transactions ended and those processes
did not attempt to start another transaction. The following sequence of events
demonstrates the problem. This example uses three different database sessions:

1. Session 1: Start a read only transaction

SQL> attach ’file mf_personnel’;
SQL> set transaction read only reserving jobs for shared read;
SQL> select * from jobs;

2. Session 2: Start another read only transaction

SQL> attach ’file mf_personnel’;
SQL> set transaction read only reserving jobs for shared read;
SQL> select * from jobs;

3. Session 3: Attempt to truncate a snapshot file

SQL> alter database file mf_personnel alter storage area jobs
cont> snapshot allocation is 1 pages;

4. Session 1: Start another read only transaction

SQL> commit;
SQL> set transaction read only reserving jobs for shared read;
SQL> select * from jobs;

5. Session 2: Start another read only transaction

SQL> commit;
SQL> set transaction read only reserving jobs for shared read;
SQL> select * from jobs;

.

.

.

Until both of the transactions committed and refrained from starting another
transaction, the truncating process would hang.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. Processes will
now allow the truncating process to proceed before starting another transaction.

3.1.5 Excessive SPAM Page Locks, I/O and Stalls With Fast Incremental
Backup

Bug 754173

When the ‘‘fast incremental backup’’ feature is enabled, processes updating
database pages may excessively fetch and lock SPAM pages. At high update
rates, this SPAM page lock contention can impact application performance.

A possible workaround to these excessive SPAM fetches is to disable the ‘‘fast
incremental backup’’ feature. Use the SQL statement ‘‘ALTER DATABASE
FILENAME ... NO INCREMENTAL BACKUP SCAN OPTIMIZATION’’ to disable
the ‘‘fast incremental backup’’ feature.

3–4 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

This problem has been reduced in Oracle Rdb7 Release 7.0.6.1. SPAM page
fetches for ‘‘fast incremental backup’’ updates have been eliminated in many
cases. A bit map of those SPAM pages that have already been evaluated or
updated is maintained on each node so that individual processes should not have
to check a SPAM page once it has been evaluated on the system.

3.1.6 Date Function Causes RDML/PASCAL Compilation Problems
Bug 908356

A problem in the way date functions were parsed caused errors during RDML
compilation.

The following code fragment provides an example of this RDML compilation error.

{== bug.rpa ==============================}
PROGRAM Personnel (input, output);
DATABASE PERSONNEL = FILENAME ’mf_personnel’;
TYPE

dummy_rec = PACKED RECORD
salary_start : rdml$cddadt_type;

END;
dummy_ptr = [unsafe] ^dummy_rec;

VAR
dum_ptr : dummy_ptr;

FUNCTION dummydate (indate : rdml$cddadt_type) : rdml$cddadt_type;
BEGIN

dummydate := indate ;
END;

BEGIN
NEW (dum_ptr);
READY personnel;
WITH dum_ptr^ DO
BEGIN
FOR sal IN SALARY_HISTORY

sal.SALARY_START := dummydate(salary_start);
END_FOR;
END;
COMMIT;

END.

$ rdml /pas bug.rpa
%RDML-E-DMLSYNTAX, Syntax error: found ’SALARY_START’ when expecting
’Field name or DB_KEY’
%RDML-I-ATLINE, at line 22 in the file BUG.RPA;
%RDML-I-NODMLOUTPUT, No output file generated due to errors
%RDML-I-SUMMARY, Completed with 1 Errors, 0 warnings, and

1 informational message

A possible workaround for this problem is to change the local variable name so
that it is not identical to any column name in the referenced table(s).

Bug 1477955

Another problem in how date functions were parsed by RDML caused errors
when optional parameters were omitted from a routine call reference. Although
the RDML compilation suceeds, incorrect PASCAL code is generated.

The following code fragment provides an example of this PASCAL compilation
error.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–5

{== bug.rpa ==============================}

PROGRAM Personnel (input, output);
DATABASE PERSONNEL = FILENAME ’MF_PERSONNEL’;
VAR

date1 : rdml$cddadt_type;

FUNCTION dummydate (indate : [TRUNCATE] rdml$cddadt_type) :
rdml$cddadt_type;
BEGIN

dummydate := indate ;
END;

BEGIN
READY personnel;
STORE S IN Salary_history USING
S.SALARY_START := dummydate;
END_STORE;

COMMIT;
END.

$rdml/pascal bug.rpa
$ pascal/nowarn/lis bug

:= dummydate::RDML$CDDADT_TYPE
.............^
%PASCAL-E-IVFUNCALL, Invalid use of function call
-PASCAL-I-NOTBECAST, - may not be type cast
at line number 204 in file BUG.PAS;1
%PASCAL-E-ENDDIAGS, PASCAL completed with 2 diagnostic

There is no workaround for this problem.

These problems have been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.7 RDBPRE Results in MAXARGEXC Warning from Alpha MACRO Compiler
Bug 1111805

In prior releases of Oracle Rdb7, the RDBPRE pre-processor may generate
intermediate code which causes the Alpha MACRO compiler to generate a
warning during compilation. For example,

Rdb$0013AC6C7569E2919F53FE145::
^
%AMAC-W-MAXARGEXC, MAX_ARGS exceeded in routine
RDB$0013AC6C7569E2919F53FE145, using 3 at line number 167 in file
DISK:[TEST.RDB70]REPRO.MAR;1

This warning is generated when an INVOKE statement uses a runtime database
name as shown in this example

PROGRAM TEST_APPL
option type = EXPLICIT
declare string empid, mf_personnel
empid = "00165"

&Rdb& invoke database DB = filename "mf_personnel"
&Rdb& runtime filename mf_personnel

&Rdb& declare_stream TEST_STREAM
&Rdb& using st1 in db.employees
&Rdb& with st1.employee_id = empid

&Rdb& start_stream TEST_STREAM

&Rdb& fetch TEST_STREAM

&Rdb& end_stream TEST_STREAM

3–6 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

END PROGRAM

These warnings are not serious and the application will continue to work. Oracle
recommends defining the following symbol for MACRO whenever RDBPRE is
used to compile sources.

$ MACRO == "MACRO/WARN=(NOINFO,NOWARN)

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. The RDBPRE
pre-processor now correctly counts optional arguments to generated routines that
perform the default ready and start transaction actions.

3.1.8 Error Writing File SORTWORK.TMP, Normal Successful Completion
Bug 1495500

Occasionally, a query would fail with the following errors:

%RDB-F-SYS_REQUEST, error from system services request
-COSI-F-FILWRITEERR, error writing file <dev-dir>SORTWORKn.TMP;
-SYSTEM-S-NORMAL, normal successful completion

While it was obvious that a sort was failing, the reason for the failure was not
obvious. The problem was that an IO completion code was being incorrectly
tested. The test has been corrected.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.9 Extraneous Logical Area Created by DROP STORAGE MAP
Bug 703265

In prior releases of Oracle Rdb, the DROP STORAGE MAP statement may create
an extra logical area when a simple storage map is deleted. A simple storage map
is one that does not specify any STORE clause, i.e. usually only COMPRESSION
settings.

This problem occurs because the DROP STORAGE MAP statement assumes that
all logical areas for the table have been deleted and adds one to ensure that the
table is valid. In general, this problem is harmless but it does consume logical
area resources which can only be recovered by rebuilding the database (such as
using SQL EXPORT and IMPORT). No data is lost by this command because the
DROP STORAGE MAP statement will fail if rows exist in the table.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.10 Cannot Disable SAME BACKUP FILENAME Clause
Bug 1240826

In prior versions of Oracle Rdb, attempts to remove the setting of SAME
BACKUP FILENAME AS JOURNAL clause using NO BACKUP FILENAME
were not successful. This clause was only affecting the setting of the related
BACKUP FILENAME clause.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. The NO
BACKUP FILENAME clause can now be used as part of the ALTER DATABASE
... JOURNAL IS ENABLED statement, ALTER JOURNAL clause, or ADD
JOURNAL clause to disable the prior (or default) setting of the SAME BACKUP
FILENAME attribute.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–7

3.1.11 Query Having OR Compound Predicates With Subquery Returns Wrong
Results

Bug 1527102

The following query contains the OR of three predicates: one of which is based
on the results of a subquery; one of which is a filter predicate of the form column
= literal; and one of which is a constant of the form literal = literal. The query
should return 1 row.

set flags ’strategy,detail’;
select t1.hmcnr from t1 t1

where t1.ean=’5410103914978’ and
(t1.shop_class = (select sho.shop_class from r_shop sho

where sho.shop=’460’)
or t1.shop_class=’A’
or ’XXX’=’460’);

Tables:
0 = t1
1 = R_SHOP

Cross block of 2 entries
Cross block entry 1
Aggregate: (VIA)
Conjunct: 1.SHOP = ’460’
Conjunct: ’XXX’ = ’460’
Get Retrieval sequentially of relation 1:R_SHOP

Cross block entry 2
Conjunct: (0.ean = ’5410103914978’) AND ((0.shop_class = {subselect}) OR

(0.shop_class = ’A’) OR (’XXX’ = ’460’))
Get Retrieval sequentially of relation 0:t1

HMCNR
45281
45134
2 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. A filter predicate is ANDed to an OR compound predicate

2. The OR compound predicate contains a subquery predicate, a couple of filter
predicates and a constant predicate

As a workaround, the query works if the constant predicate is removed.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.12 Query Using OR/AND Predicates With EXISTS Clause Returns Wrong
Results

Bug 1569972

The following query using AND/OR predicates with an EXISTS clause should
return 1 row:

set flags ’strategy,detail’;

3–8 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

select t1.c1 from t1 t1, t2 t2 where
((t2.c4 = 1 and
t2.c5 = 5 and
not exists (select * from t2 t2a <----

where t2a.c4 = 4 and t2a.c5 = 5)) or <----
(t2.c4 = 4 and t2.c5 = 5)) <----
and t1.c1 = t2.c6 <----
;
Tables:
0 = T1
1 = T2
2 = T2

Cross block of 3 entries
Cross block entry 1
Conjunct: {subselect} = 0
Aggregate-F1: (COUNT-ANY) Index only retrieval of relation 2:T2
Index name T2_H [2:2]
Key: (2.C4 = 4) AND (2.C5 = 5)

Cross block entry 2
Conjunct: (1.C4 = 1) OR (1.C4 = 4)
Conjunct: 1.C5 = 5
Conjunct: {subselect} = 0
Get Retrieval by index of relation 1:T2
Index name T2_H [(2:2)2] Bool
Key: ((1.C4 = 1) AND (1.C5 = 5)) OR ((1.C4 = 4) AND (1.C5 = 5))
Bool: 1.C5 = 5

Cross block entry 3
Index only retrieval of relation 0:T1
Index name T1_H [1:1]
Key: 0.C1 = 1.C6

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. OR parent predicate with AND predicates on each branch

2. One of the OR branches also includes a subquery, such as NOT EXISTS

3. A second AND predicate is appended after the OR parent predicate

As a workaround, the problem can be corrected if you move the second AND
predicate to the front of the OR parent predicate, as follows:

set flags ’strategy,detail’;

select t1.c1 from t1 t1, t2 t2 where
t1.c1 = t2.c6 and <----
((t2.c4 = 1 and
t2.c5 = 5 and
not exists (select * from t2 t2a <----

where t2a.c4 = 4 and t2a.c5 = 5)) or <----
(t2.c4 = 4 and t2.c5 = 5)) <----
;

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.13 Query Using German Collating Sequence Returns Wrong Results
Bug 1530947

The following query, in a database where the German Collating Sequence is used
by default, returns wrong results (should return some rows):

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–9

SELECT p.datum, p.produkt, p.abtlg, p.stelle
FROM v_team_datum p,

produkte g
where

p.abtlg=g.abtlg ;
Conjunct
Match

Outer loop
Sort Conjunct Aggregate Sort Conjunct
Leaf#01 BgrOnly PROD_DATEN Card=24063
BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8

Inner loop (zig-zag)
Conjunct Get Retrieval by index of relation PRODUKTE
Index name IDX_PRODUKTE_SORT [0:0]

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The query is a simple join between a view and one table, with the join
predicate of CHAR data type

2. The optimizer uses a match strategy to join them, where a comparison of
the join keys requires the process of encoding the CHAR data type into the
German collating sequence

As a workaround, the query works if a view with the same attributes as the table
is used instead of the table itself, as in the following example:

SELECT p.datum, p.produkt, p.abtlg, p.stelle
FROM v_team_datum p,

view_produkte g
where

p.abtlg=g.abtlg ;
Cross block of 2 entries
Cross block entry 1
Conjunct Aggregate Sort Conjunct
Leaf#01 BgrOnly PROD_DATEN Card=24063
BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8

Cross block entry 2
Leaf#02 FFirst PRODUKTE Card=25
BgrNdx1 IDX_PRODUKTE_SORT [3:3] Fan=6

The query works because the optimizer applies a cross strategy instead of a
match strategy.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.14 Left Outer Join Query Returns Wrong Results When ON Clause
Evaluates to False

Bug 1581632

The following left outer join query returns wrong results when the join conditions
in the ON clause evaluate to false for all rows:

3–10 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

set flags ’strategy,detail’;
select tt.employee_id, tt.last_name, jh.job_code
from

(select e.employee_id, e.last_name
from degrees d, employees e where

e.employee_id = ’00354’
and d.employee_id = e.employee_id) as tt

left outer join
job_history jh
on tt.last_name = ’?’ and <----

jh.job_code = tt.employee_id; <----
Tables:
0 = DEGREES
1 = EMPLOYEES
2 = JOB_HISTORY

Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Conjunct: "tt.last_name" = ’?’
Merge of 1 entries
Merge block entry 1
Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 1:EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup
Key: 1.EMPLOYEE_ID = ’00354’

Cross block entry 2
Index only retrieval of relation 0:DEGREES
Index name DEG_EMP_ID [1:1]
Key: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID

Cross block entry 2
Conjunct: ("tt.last_name" = ’?’) AND

(2.JOB_CODE = tt.employee_id)
Get Retrieval by index of relation 2:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]

0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. Left outer join query on a subquery and job_history of mf_personnel database

2. ON clause containing two or more predicates, and the ON clause evaluates to
false for all rows, for example:

"last_name" = ’?’ and jh.job_code = tt.employee_id

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.15 Query With Two IN Clauses on Two Subqueries Returns Wrong Results
Bug 1585429

The following query with two IN clauses on two subqueries with different match
keys, returns a count of 0 when it should return a non-0 count:

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–11

SELECT count(*) FROM t1
WHERE

subclass_id IN (SELECT DISTINCT subclass_id
FROM t2
WHERE class_id = ’CAJ_C01#’)

AND
recipe_id IN (SELECT recipe_id

FROM t3
WHERE eqp_id = ’CAR-02C’
)

;
Aggregate Conjunct
Match

Outer loop
Conjunct
Match

Outer loop
Get Retrieval by index of relation t1
Index name t1_ndx [0:0]

Inner loop (zig-zag)
Aggregate-F1 Conjunct
Index only retrieval of relation t2
Index name t2_ndx [0:0]

Inner loop (zig-zag)
Aggregate-F1 Conjunct Get
Retrieval by index of relation t3
Index name t3_ndx [1:1]

0
1 row selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. Two different IN clauses on two subqueries, with different match keys

2. The query applies a match strategy where the outer leg uses the match key
(subclass_id) of another match stream that is different from the other key
(recipe_id) of the inner leg without sorting the results of the outer leg using
the match key (subclass_id).

Oracle Rdb7 Release 7.0.5 applies a sort node on the outer leg and thus returns
the correct results.

As a workaround, use a query outline to change the strategy to cross from match.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.16 Query Having Same SUBSTRINGs Within CASE Expression Returns
Wrong Results

Bugs 1489972, 1485656, 975091

The following queries, containing the same SUBSTRING expressions within a
CASE expression, return wrong results.

The following example shows two simple queries (from Bug 1485656 and Bug
975091) having the same subexpression (SUBSTRING) appearing more than
once within the CASE expression. The query in the case of Bug 1489972 is more
complicated and thus omitted here. It contains unions of several subselect queries
with nested views and SUBSTRING/CASE expressions.

3–12 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

! Bug 1485656
! should return the value 1 for the content of y
! ~Xt: Content of y = 1
!
set FLAGS ’TRACE’
declare :x char(2);
declare :y char(1);
begin
set :x=’21’;
set :y= case

when ((substring(:x from 1 for 1)=’1’) and
(substring(:x from 2 for 1)=’1’))
then ’O’

else
(substring(:x from 2 for 1))

end;
trace ’Content of y = ’, :y ;
end;
The output is:
~Xt: Content of y =

! Bug 975091
! should return the value of 295 for the column RESP
!
create table t1 (c1 char(12));
insert into t1 value (’29500000199’);

select substring(c1 from 1 for 3) ress,
case

when ’a’ = ’c’ and (substring(c1 from 1 for 3)) = ’295’
then ’a’

when ’c’ = ’c’
then (substring(c1 from 1 for 3))

else ’ ’
end resp

from t1;
RESS RESP
295
1 row selected

The key parts of these queries which contributed to the situation leading to the
errors are these:

1. CASE expression contains several similar expressions

2. The expression in the WHEN clause is shared in the same clause of another
WHEN clause (in the case of Bug 975091)

3. The expression in the WHEN clause is shared in another part of the CASE
statement, such as an ELSE clause (in the case of Bug 1485656)

In the case of Bug 1485656, a workaround is to use an IF instead of a CASE
statement to get the correct results:

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–13

set FLAGS ’TRACE’
declare :x char(2);
declare :y char(1);
begin
set :x=’21’;

if ((substring(:x from 1 for 1)=’1’) and
(substring(:x from 2 for 1)=’1’))
then

set :y=’O’;
else

set :y=(substring(:x from 2 for 1));
end if;

trace ’Content of y:’,:y;
end;

Another workaround is to use temporary variables for the substrings.

In the case of Bug 975091, the workaround is to swap the WHEN clauses, as in
the following example:

select substring(c1 from 1 for 3) ress,
case

when ’c’ = ’c’
then (substring(c1 from 1 for 3)) ! <= 1st

when ’a’ = ’c’ and (substring(c1 from 1 for 3)) = ’295’ ! <= 2nd
then ’a’

else ’ ’
end resp

from t1;

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.17 AIJ File Name Was Not Translated When Defined in SQL
Bug 1573242

If a logical name was specified for an AIJ file name, the logical was not being
translated at the time the AIJ file was defined using SQL. Since the logical name
was stored in the database as the default AIJ file name instead of its translated
value, and the default AIJ file name is used to specify the AIJ file name when
the AIJ file is created, whenever the logical name was deassigned or changed
unexpected results could occur. For example, an RMU/RESTORE executed after
the logical name was deassigned created the AIJ file with the same name as
the logical name and placed it in the default directory where the database root
file was stored since the AIJ file name logical could no longer be translated
to a correct AIJ file specification. Now when the AIJ file name is defined in
SQL, if it translates to a logical name, the logical name will be translated and
the translated file name will be stored in the database, not the logical name.
For example, if "tmp1_aij" is specified and this is a logical, "tmp1_aij" will be
translated to it’s current translation "tmp1:aij_01.aij" which will be stored in the
database as the default AIJ filename.

The following example shows that the logical name TMP1_AIJ and not its
translated value TMP1:AIJ_01.AIJ was stored in the database when the SQL
ALTER DATABASE command was executed.

$define tmp1_aij tmp1:aij_01.aij

SQL> alter database filename my_db journal is enabled
add journal aij_01 filename tmp1_aij allocation is 500 blocks;

RMU/DUMP/HEADER my_db

3–14 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

FILE DSK01:[TMP1]AIJ_01.AIJ;1 (current aij file name)
FILE TMP1_AIJ (default aij file name)

As a workaround to this problem, do not use a logical name when defining the
AIJ file in SQL.

SQL> alter database filename my_db journal is enabled
add journal aij_01 filename tmp1:aij_01.aij allocation is 500 blocks;

RMU/DUMP/HEADER my_db

FILE DSK01:[TMP1]AIJ_01.AIJ;1 (current aij file name)
FILE TMP1:AIJ_01.AIJ; (default aij file name)

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.18 Erroneous RDMS-F-ALSACTIVE Errors
Bug 1613851

The error RDMS-F-ALSACTIVE, "Database replication is active" may be
incorrectly returned when attaching to, or performing valid read only transactions
on, the Standby Database in a Hot Standby environment. This problem was
introduced in Oracle Rdb7 Release 7.0.6.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.1.19 Aggregate Query With Nested MIN Function Returns Wrong Results
Bug 1408892

The following query should return the value of ADMN for min(d1.department_
code):

create index dept_managerid_code_ndx on departments
(manager_id,department_code);

select min(d1.department_code),
min((select min (d2.department_code)

from departments d2
where d1.manager_id = d2.manager_id AND

d2.budget_actual > 0))
from departments d1;

NULL NULL
1 row selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. The subselect query has "where" predicates which cause the query to return 0
rows, e.g. "d2.budget_actual > 0"

2. The subselect query contains an aggregate function, e.g. MIN

3. The subselect query is wrapped inside another aggregate function, e.g. MIN

As a workaround to this problem, the query works if the MIN function is removed
from the column ’d2.department_code’ in the inner subselect, as seen in the
following example.

select min(d1.department_code),
min((select d2.department_code

from departments d2
where d1.manager_id = d2.manager_id AND

d2.budget_actual > 0))
from departments d1;

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–15

3.2 SQL Errors Fixed
3.2.1 IMPORT of Multi-file Database as Single File Database May Fail

Bug 1365631

It is possible to EXPORT a multi-file database and then use SQL IMPORT to
create a single file database from the interchange file (RBR). This is described
in the Rdb documentation and requires the IMPORT statement: to DROP all
storage areas (including RDB$SYSTEM) and all storage maps; each HASHED
index must be dropped or replaced with a SORTED index; and sorted indices
must be redefined to no longer use the STORE clause.

However, if the source database for the EXPORT included reserved storage areas
then this type of IMPORT would fail with the following message:

%SQL-F-ERRCRESCH, Error creating database filename {databasename}
-RDMS-F-MFDBONLY, operation is not allowed on single-file databases

Note

Reserved storage areas can be defined explicitly using the RESERVE
... STORAGE AREAS clause of ALTER and CREATE DATABASE, or
implicitly when ALTER DATABASE ... DROP STORAGE AREA clause is
used.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. The IMPORT
command now detects that there are no storage areas being created, and hence
that the result database will be single file. The RESERVE STORAGE AREA
clause is not imported in this case.

3.2.2 Known Problems With EXPORT and IMPORT Fixed
Bug 1532755

In prior versions of Oracle Rdb7, the EXPORT and IMPORT utilities did not
correctly handle some Rdb metadata that was stored in LIST OF BYTE VARYING
columns.

1. EXPORT did not correctly save the QUERY HEADER definition for domains
and columns.

EXPORT would introduce a CR/LF delimiter between each segment because
it incorrectly treated the query header in the same way as a multi-line text
string such as a comment or source definition. The use of this delimiter
was introduced in Oracle Rdb7 to better handle large definitions and user
comments.

The workaround for this problem is to ALTER DOMAIN and ALTER TABLE
ALTER COLUMN to apply a new and corrected QUERY HEADER to the
affected domains and columns. Single segment query headers are not affected
by this problem.

2. IMPORT did not correctly handle very long access control lists (ACL) for
tables, databases, domains, functions or procedures. The ACL was truncated,
usually with a corrupt final entry.

3–16 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

The workaround for this problem is to use RMU/EXTRACT
/ITEM=PROTECTION prior to the EXPORT and IMPORT so that the
ACL can be reapplied to the database. In this case, a long ACL is one with
more than 80 entries. In all likelihood, few databases would encounter this
problem.

The EXPORT interchange file (RBR) contains the correct information and so
can be used successfully with this and later releases.

These problems have been corrected in Oracle Rdb7 Release 7.0.6.1.

3.2.3 Truncated Values Output by TRACE Statement
Bug 1231207

The TRACE statement did not allocate sufficient space to format large scaled
numeric values. When TINYINT, SMALLINT, INTEGER or BIGINT values
with non-zero scales were displayed, it was possible for the trailing digit to
be truncated. If the dialect was set to SQL92 or ORACLE LEVEL1, then a
warning was returned for SQLCODE and SQLSTATE that indicated that a string
truncation had occurred.

SQL> set dialect ’SQL92’;
SQL> attach ’file TEST’;
SQL> set flags ’trace’;
SQL>
SQL> begin
cont> declare :x integer(1) = -123456789.1;
cont> trace :x;
cont> end;
~Xt: -123456789.
%RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter
SQL>

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. TRACE now
correctly accounts for the decimal separator in scaled fixed point numeric values.

3.2.4 Multiple NOT NULL Constraints Generate WHYTWICE Exception
Bug 1293766

In prior releases of Oracle Rdb, the CREATE TABLE statement would fail if a
NOT NULL clause was applied more than once to a column. This error message
did not report the name of the column that caused this error.

SQL> create table tttt
cont> (a integer
cont> not null not deferrable
cont> not null deferrable
cont> unique);
%SQL-F-WHYTWICE, Column is specified more than once in the column list of a
constraint.
SQL>
SQL> show table tttt;
No tables found
SQL>

In this example, the NOT NULL is redundant and only one is required for the
table. However, to better support tools such as RMU Extract, this error has been
made a warning and enhanced to display the name of the column. The CREATE
TABLE statement now succeeds.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–17

SQL> create table tttt
cont> (a integer
cont> not null not deferrable
cont> not null deferrable
cont> unique);
%SQL-W-WHYTWICE, Column A is specified more than once in the column list of a
constraint.
SQL>
SQL> show table tttt;
Information for table TTTT

Columns for table TTTT:
Column Name Data Type Domain
----------- --------- ------

A INTEGER
Unique constraint TTTT_UNIQUE_A
Not Null constraint TTTT_NOT_NULL1
Not Null constraint TTTT_A_NOT_NULL

.

.

.

The database administrator should review CREATE TABLE statements which
produce this warning as the redundant constraint definition may add unneeded
overhead to query processing.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.2.5 DROP FUNCTION or DROP PROCEDURE Leave Dependency Records
In prior releases of Oracle Rdb7, the DROP FUNCTION and DROP PROCEDURE
statements applied to stored routines did not correctly erase old dependency
records from RDB$INTERRELATIONS. The result was that actions on these
dependent objects would continue to fail, even though no relationship remained
with the dropped routine.

The workaround to this problem is to use DROP MODULE which correctly erases
these old dependency records.

The following example shows the erroneous action of DROP FUNCTION as well
as the workaround that successfully uses DROP MODULE.

3–18 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

SQL> create table sample1
cont> (vector integer(1),
cont> pcnt integer,
cont> pv_ix integer,
cont> patt_ix integer);
SQL>
SQL> create table sample2
cont> (tchan smallint,
cont> chan_num smallint,
cont> mode char(1),
cont> pv_ix integer);
SQL>
SQL> create procedure sethexbits
cont> (inout char(544) by reference,
cont> in smallint by value);
cont> external name sethexbits
cont> language C
cont> general parameter style;
SQL>
SQL> create module vecsigmod language SQL
cont> function vecsig(in :pv_ix integer) returns char(544);
cont> begin
cont> declare :hexvecstr char(544) = ’ ’;
cont> call sethexbits(:hexvecstr, -1);
cont> for :x
cont> as each row of
cont> select tchan from sample2 where pv_ix = :pv_ix
cont> do
cont> call sethexbits(:hexvecstr,:x.tchan);
cont> end for;
cont> return :hexvecstr;
cont> end;
cont> end module;
SQL>
SQL> select cast(rdb$object_name as char(10)) as obj,
cont> cast(rdb$subobject_name as char(10)) as subobj,
cont> cast(rdb$entity_name1 as char(10)) as name1,
cont> cast(rdb$entity_name2 as char(10)) as name2
cont> from rdb$interrelations
cont> where rdb$subobject_name = ’VECSIG’
cont> or rdb$entity_name2 = ’VECSIG’;
OBJ SUBOBJ NAME1 NAME2

SETHEXBITS VECSIGMOD VECSIG
SAMPLE2 VECSIGMOD VECSIG
SAMPLE2 PV_IX VECSIGMOD VECSIG
SAMPLE2 TCHAN VECSIGMOD VECSIG
4 rows selected
SQL>
SQL> drop function vecsig;
SQL>
SQL> select cast(rdb$object_name as char(10)) as obj,
cont> cast(rdb$subobject_name as char(10)) as subobj,
cont> cast(rdb$entity_name1 as char(10)) as name1,
cont> cast(rdb$entity_name2 as char(10)) as name2
cont> from rdb$interrelations
cont> where rdb$subobject_name = ’VECSIG’
cont> or rdb$entity_name2 = ’VECSIG’;
OBJ SUBOBJ NAME1 NAME2

SETHEXBITS VECSIGMOD VECSIG
SAMPLE2 VECSIGMOD VECSIG
SAMPLE2 PV_IX VECSIGMOD VECSIG
SAMPLE2 TCHAN VECSIGMOD VECSIG
4 rows selected
SQL>
SQL> show function vecsig;

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–19

No Functions Found
SQL>
SQL> show module vecsigmod;
Module name is: VECSIGMOD
Header: vecsigmod language SQL
No description found
Owner is:
Module ID is: 39
No Procedures Found
No Functions Found

SQL>
SQL> alter table sample2 drop column tchan;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-OBJ_INUSE, object "SAMPLE2.TCHAN" is referenced by
VECSIGMOD.VECSIG (usage: Function)
-RDMS-F-RELFLDNOD, field TCHAN has not been deleted from relation SAMPLE2
SQL>
SQL> drop module vecsigmod;
SQL>
SQL> alter table sample2 drop column tchan;
SQL>

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3.3 Oracle RMU Errors Fixed
3.3.1 RMU /UNLOAD /AFTER_JOURNAL Sort Performance

The RMU /UNLOAD /AFTER_JOURNAL command sorts all records for each
transaction in order to remove duplicate modifications to the same record within
a transaction. Previous versions of the RMU /UNLOAD /AFTER_JOURNAL
command used the ‘‘SORT32’’ package to perform this sorting. However,
when a large number of transactions are extracted (and particularly when
the transactions do not modify many records), the overhead of using the SORT32
package can become significant.

In Oracle Rdb7 Release 7.0.6.1, the RMU /UNLOAD /AFTER_JOURNAL
command now utilizes an internal memory-only ‘‘Quick Sort’’ algorithm for
transactions that have less than 128 records in the after image journal file.
This should result in significant performance improvements for certain cases of
extracting data from the after image journal file.

3.3.2 RMU /UNLOAD /AFTER_JOURNAL DBKEY and Records in Mixed Format
Storage Areas

Previously, the RMU /UNLOAD /AFTER_JOURNAL command was unable to
return the logical area number in the database key (DBKEY) when extracting
records stored in a mixed format storage area. The DBKEY would contain a zero
for the logical area number. Records extracted from tables stored in uniform
format storage areas had the correct DBKEY value because the logical area
number is stored in the after-image journal file.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1. The RMU
/UNLOAD /AFTER_JOURNAL command now loads the area inventory pages
(AIP) and uses them to translate from a physical DBKEY (as stored in the after-
image journal) to a logical DBKEY for each record from a table stored in a mixed
format storage area.

3–20 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

3.3.3 Confusing Lock Mode Displays Updated
Previously, Oracle Rdb7 would incorrectly display both requested and granted
modes for all lock states.

In the following output from the RMU /SHOW LOCKS command, one lock is on
the grant queue and the other lock is on the convert queue. The requested mode
is displayed for the granted lock. This is incorrect because a granted lock does
not have a request mode; only the granted mode is valid.

-Master Node Info -Lock Mode Information- Remote Node Info-
ProcessID Lock ID SystemID Requested Granted Queue Lock ID SystemID
2040A8DB 20009773 00010002 PR PW GRANT 20009773 00010002
2040FABC 20004367 00010002 PR NL CNVRT 20004367 00010002
2040E672 2000A64A 00010002 EX NL WAIT 2000A64A 00010002

The impact of this situation has been reduced in Oracle Rdb7 Release 7.0.6.1.
Various displays (in the RMU SHOW STATISTICS Utility and the RMU SHOW
LOCKS Utility) have been corrected to only display the requested mode value
for locks that are in the wait or convert queues. The granted mode value is
only displayed for those locks that are in the grant or convert queues. See the
OpenVMS System Services Reference Manual for more information on lock
queues and modes.

The following output from the RMU /SHOW LOCKS command demonstrates
that granted locks do not display a value for the requested mode (it is blank).
Only locks on the convert queue display both requested and granted information.
Locks on the waiting queue display only the requested mode; the granted mode is
blank.

-Master Node Info -Lock Mode Information- Remote Node Info-
ProcessID Lock ID SystemID Requested Granted Queue Lock ID SystemID
2040A8DB 20009773 00010002 PW GRANT 20009773 00010002
2040FABC 20004367 00010002 PR NL CNVRT 20004367 00010002
2040E672 2000A64A 00010002 EX WAIT 2000A64A 00010002

3.3.4 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors
Bug 1472061

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when
verifying storage areas. These errors indicate that the Space Area Management
(‘‘SPAM’’) page fullness threshold for a particular data page does not match the
actual space usage on the data page. For a further discussion of SPAM pages
consult the Oracle Rdb7 Guide to Database Maintenance.

Three problems have been found in the Oracle Rdb7 product that may introduce
these inconsistencies:

1. In the following situation, the DBR would neglect to update the last SPAM
page referenced.

• The FAST COMMIT feature was enabled

• A process terminated abnormally and a Database Recovery (‘‘DBR’’)
process ran to recover the failed process

• The DBR had to ‘‘redo’’ changes made by the failed process

2. An error was sometimes made in the SPAM threshold calculations when there
were unused line index (‘‘LDX’’) entries at the end of the LDX on a data page
and the total free space on the page was just below a threshold.

Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1 3–21

3. When using Row Cache and rows in the cache were deleted or their size
changed.

These problems have been corrected in Oracle Rdb7 Release 7.0.6.1. Further
introduction of these SPAM inconsistencies should be reduced. Note that existing
SPAM errors will remain until manually corrected. Also, while the incidence of
these errors has been reduced they cannot be totally eliminated. See Section 6.0.4
for more information.

3.3.5 RMU/SHOW STATISTICS RMS-F-DEV Error With /INPUT
When using a RMU SHOW STATISTICS prerecorded binary file on a different
system than the one that originally collected the statistics data, it is possible for
the RMU SHOW STATISTICS utility to fail with a "RMS-F-DEV" fatal error as
in the following example:

$ RMU/SHOW STATISTICS/INPUT=X.DAT
%RMS-F-DEV, error in device name or inappropriate device type for operation
%RMU-F-FATALOSI, Fatal error from the Operating System Interface.
%RMU-F-FTL_SHOW, Fatal error for SHOW operation at 10-JAN-2001 02:47:05.42

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.1.

3–22 Software Errors Fixed in Oracle Rdb7 Release 7.0.6.1

4
Enhancements

4.1 Enhancements Provided in Oracle Rdb7 Release 7.0.6.2
4.1.1 New /TRANSACTION_TYPE Qualifier for RMU /Unload

This qualifier provides complete read transaction control to the user.

SYNTAX:

/TRANSACTION_TYPE=options

One of the following transaction modes can be specified:

AUTOMATIC
READ_ONLY
EXCLUSIVE
PROTECTED
SHARED

• AUTOMATIC

The transaction type will depend upon the current database settings for
snaphots (enabled, deferred, or disabled), transaction modes available to this
user, and the standby status of this database. AUTOMATIC is the default
transaction mode.

• READ_ONLY

Starts a READ ONLY transaction.

• EXCLUSIVE

Starts a READ WRITE transaction and reserves the table for EXCLUSIVE
READ.

• PROTECTED

Starts a READ WRITE transaction and reserves the table for PROTECTED
READ.

• SHARED

Starts a READ WRITE transaction and reserves the table for SHARED
READ.

The transaction isolation level can be specified using the ISOLATION_LEVEL
option. It accepts the following keywords:

READ_COMMITTED
REPEATABLE_READ
SERIALIZABLE

Please refer to the Oracle Rdb7 SQL Reference Manual under the SET
TRANSACTION statement for a complete description of these isolation levels.

Enhancements 4–1

The wait setting can be specified using:

WAIT [= n]
NOWAIT

Wait accepts an optional integer value representing the number of seconds to
wait before the transaction times out.

• WAIT

Will wait indefinitely on a locked resource.

• WAIT = n

’n’ is the transaction lock timeout interval. This instructs Rdb to wait ’n’
seconds before aborting the wait, and the RMU Unload session. Specifying a
wait timeout interval of zero (0) is equivalent to specifying NOWAIT.

• NOWAIT

Will not wait on locked resources.

USAGE NOTES:

* If the /TRANSACTION_TYPE qualifier is omitted, then a READ ONLY
transaction is started against the database. This is provided for backward
compatibility with prior Rdb releases. However, if the /TRANSACTION_TYPE
qualifier is used without specifying a transaction mode then AUTOMATIC will be
used.

* If the database has snapshots disabled, then Oracle Rdb will default to a READ
WRITE ISOLATION LEVEL SERIALIZABLE transaction. Locking may be
reduced by specifying AUTOMATIC, or (SHARED,ISOLATION_LEVEL=READ_
COMMITTED) transaction.

EXAMPLES:

Example 1: Specify a transaction for RMU/UNLOAD equivalent to the SET
TRANSACTION READ WRITE WAIT 36 RESERVING table1 FOR SHARED
WRITE;

$ rmu/unload-
/transaction_type=(shared,isolation=repeat,wait=36)-
sample.rdb-
table1-
table.dat

Example 2: This example specifies the options which were the default transaction
style in prior releases.

$ rmu/unload-
/transaction_type=(read_only,isolation_level=serializable)-
sample.rdb-
table1-
table1.dat

Example 3: This example specifies transaction type of AUTOMATIC so that
RMU/ Unload will adapt to the current database configuration. For instance,
if the database currently has SNAPSHOTS ENABLED DEFERRED, it is
more efficient to start a READ WRITE transaction with isolation level READ
COMMITTED. This allows the transaction to start immediately (a READ ONLY
transaction may stall), and the selected isolation level keeps row locking to a
minimum.

4–2 Enhancements

$ rmu/unload-
/transaction_type=(automatic)-
sample.rdb-
table1-
table1.dat

This could also be explicitly stated using:

$ rmu/unload-
/transaction_type=(shared,isolation=read_committed)-
sample.rdb-
table1-
table1.dat

4.1.2 New /TRANSACTION_TYPE Qualifier for RMU/Extract
This qualifier provides complete read transaction control to the user.

SYNTAX:

/TRANSACTION_TYPE=options

One of the following transaction modes can be specified:

AUTOMATIC
READ_ONLY
WRITE

• AUTOMATIC

The transaction type will depend upon the current database settings for
snaphots (enabled, deferred, or disabled), transaction modes available to this
user, and the standby status of this database.

• READ_ONLY

Starts a READ ONLY transaction.

• WRITE

Starts a READ WRITE transaction.

The transaction isolation level can be specified using the ISOLATION_LEVEL
option. It accepts the following keywords:

READ_COMMITTED
REPEATABLE_READ
SERIALIZABLE

Please refer to the Oracle Rdb7 SQL Reference Manual under the SET
TRANSACTION statement for a complete description of these isolation levels.

The wait setting can be specified using:

WAIT [= n]
NOWAIT

Wait accepts an optional integer value representing the number of seconds to
wait before the transaction times out.

• WAIT

Will wait indefinitely on a locked resource.

• WAIT = n

’n’ is the transaction lock timeout interval. This instructs Rdb to wait ’n’
seconds before aborting the wait, and the RMU/Extract session. Specifying a
wait timeout interval of zero (0) is equivalent to specifying NOWAIT.

Enhancements 4–3

• NOWAIT

Will not wait on locked resources.

USAGE NOTES:

* If the qualifier /TRANSACTION_TYPE is omitted from the command line then
the default transaction will be READ ONLY, which is backward compatible with
prior releases of Oracle Rdb. If /TRANSACTION_TYPE is specified with no
options then the default is /TRANSACTION_TYPE=AUTOMATIC.

Note: If RMU/Extract detects that the database has snapshots disabled and
/TRANSACTION_TYPE was omitted, then the transaction is restarted as READ
WRITE ISOLATION LEVEL READ COMMITTED to reduce the number of rows
locked by operations /OPTION=VOLUME_SCAN.

* Although a WRITE transaction is started on the database, RMU Extract does
not attempt to write to the database tables.

EXAMPLES:

Example 1: If a database has SNAPSHOTS ENABLED DEFERRED it may
be preferable to start a READ WRITE transaction. In this environment, using
READ ONLY will cause a switch to a temporary SNAPSHOTS ENABLED
IMMEDIATE state. This transition will force the READ ONLY transaction to
wait while all READ WRITE transactions complete, and then all new READ
WRITE transactions performing updates will start writing rows to the snapshot
files for use by possible read only transactions. To avoid this problem, use an
RMU/Extract command specifying a READ WRITE ISOLATION LEVEL READ
COMMITTED transaction.

$ rmu/extract/item=table/out=tables.sql-
/transaction_type=(write,isolation=read)-
sample.rdb

Example 2: This example specifies the options which were the default transaction
style in prior releases.

$ rmu/extract/item=table/out=tables.sql-
/transaction_type=(read_only)-
sample.rdb

Example 3: This example specifies transaction type of AUTOMATIC so that
RMU/ Extract will adapt to the current database configuration. For instance,
if the database currently has SNAPSHOTS ENABLED DEFERRED, it is
more efficient to start a READ WRITE transaction with isolation level READ
COMMITTED. This allows the transaction to start immediately (a READ ONLY
transaction may stall), and the selected isolation level keeps row locking to a
minimum.

$ rmu/extract-
/transaction_type=(automatic)-
sample.rdb

This could also be explicitly stated using:

$ rmu/extract-
/transaction_type=(write,isolation=read_committed)-
sample.rdb

4–4 Enhancements

4.1.3 Installing Oracle Rdb Images as Resident on OpenVMS Alpha
On OpenVMS Alpha systems, performance of applications using Oracle Rdb may
improve by installing several of the Oracle Rdb images as ‘‘resident’’ with the
OpenVMS Install utility (INSTALL). Installing images as resident allows them to
take advantage of the OpenVMS Alpha image-slicing features.

The code sections of an image installed as resident reside in huge pages called
granularity hint regions (GHRs) in memory. The OpenVMS Alpha hardware can
consider a set of pages as a single GHR. This GHR can be mapped by a single
page table entry (PTE) in the translation buffer (TB). The result is a reduction
in TB miss rates. For more information on slicing shareable images, see the
OpenVMS documentation set.

Further, OpenVMS versions starting with V7.2-1H1 support "Resource Affinity
Domains" or RADs. When RAD support is enabled, VMS can replicate
/RESIDENT installed image data on each RAD. The advantage to this replication
is that any CPU access to the image memory will always be in the same RAD.

In order to take advantage of this capability, the image must be installed
in the system startup procedure before the end of SYSTARTUP_VMS.COM.
The easiest way to accomplish this for the Oracle Rdb images is to execute
SYS$STARTUP:RMONSTART70.COM from SYSTARTUP_VMS.COM (the
site-specific system startup procedure).

If you use many resident images, you may need to modify the GH_RES_CODE
system parameter to add approximately 2048 additional pages. The System
Dump Analyzer (SDA) command "CLUE MEMORY/GH/FULL" can be used to
display the contents and free space within the "Resident Image Code Region".

To install images as resident, use a text editor to modify the the command
procedures RMONSTART70.COM and SQL$STARTUP.COM located in the
SYS$STARTUP directory. Remove the comment character (!) from the line
RESIDENT = "/RESIDENT" and then several Rdb shareable images will be
installed as /RESIDENT.

4.1.4 New DUMP Output Format for LogMiner
A new output format type of ‘‘DUMP’’ has been added to the RMU /UNLOAD
/AFTER_JOURNAL command. This output format is intended solely as a debug
and informational tool. For each column of a record, the first 200 bytes of data
contents are formatted such that binary numeric fields are converted to text
and text fields are displayed with periods (.) replacing non-printable characters.
NULL columns are indicated with the character string ‘‘NULL’’. The actual data
length is indicated for VARCHAR columns.

Example output with the /FORMAT=DUMP qualifier:

Enhancements 4–5

$ RMU /UNLOAD /AFTER_JOURNAL MYDB.RDB MYDB.AIJBCK /FORMAT=DUMP
/TABLE=(NAME=ALL_DATATYPES_TBL, OUTPUT=SYS$OUTPUT:)

RDB$LM_ACTION : M
RDB$LM_RELATION_NAME : ALL_DATATYPES_TBL
RDB$LM_RECORD_TYPE : 25
RDB$LM_DATA_LEN : 460
RDB$LM_NBV_LEN : 66
RDB$LM_DBK : 46:635:0
RDB$LM_START_TAD : 21-JUL-2001 15:48:52.6512009
RDB$LM_COMMIT_TAD : 21-JUL-2001 15:48:53.0586846
RDB$LM_TSN : 160
RDB$LM_REC_VER : 1
TINT : -123
SINT : -321
INTEGER : -212
BINT : NULL
DECIMAL : -145
NUMERIC : NULL
FLOAT : -1.000000000000000E+000
DOUBLE_PRECISION : -2.000000000000000E+000
CHAR1 : A
CHAR20 : ABCDEFGHIJKLMNOPQRST
VCHAR_COL : (10) ABCDEFGHIJ

Note

The contents and format of the output when the /FORMAT=DUMP
qualifier is specified may change in the future.

If needed, the record definition (.RRD) file may be used to determine the actual
data type for each field of the table(s) being extracted.

4.1.5 Data and Spam Prefetch Screens Added to RMU/SHOW Statistics
Two new screens have been added to the PIO statistics part of RMU/SHOW
statistics. These screens display prefetch statistics (APF and DAPF). In prior
versions, the DAPF statistics were displayed on the "Fetch" screens. Those
statistics were moved to the new prefetch screens. In addition, APF statistics are
now displayed on the new screens as well. An example is provided below.

Node: NODE1 (1/1/1) Oracle Rdb V7.0-62 Perf. Monitor 6-AUG-2001 10:28:10.65
Rate: 3.00 Seconds PIO Statistics--Data Prefetches Elapsed: 00:58:17.86
Page: 1 of 1 DEV:[DIR]DB.RDB Mode: Online
--

statistic......... rate.per.second............. total....... average......
name.............. max..... cur..... avg....... count....... per.trans....

APF start:success 0 0 0.4 872 1.0
:failure 0 0 0.0 101 0.1

APF I/O: utilized 0 0 0.4 872 1.0
: wasted 0 0 0.0 0 0.0

DAPF start:success 0 0 0.0 74 0.0
:failure 0 0 0.0 62 0.0

DAPF I/O: utilized 0 0 0.0 18 0.0
: wasted 0 0 0.0 56 0.0

4–6 Enhancements

The information on these screens may be used to determine the effectiveness of
the APF and DAPF features. The individual rows may be interpreted as follows:

• The ‘‘APF start:success’’ statistics shows how many times Oracle Rdb7
successfully initiated an I/O to prefetch a buffer.

• The ‘‘APF start:failure’’ statistics shows how many times Oracle Rdb7
attempted to initiate a prefetch but was unable to obtain the necessary buffer
lock to proceed.

• The ‘‘APF I/O: utilized’’ statistics shows how many times Oracle Rdb7 actually
used a buffer that was prefetched.

• The ‘‘APF I/O: wasted’’ statistics shows how many times Oracle Rdb7
prefetched a buffer but never actually used it.

4.2 Enhancements Provided in Oracle Rdb7 Release 7.0.6.1
4.2.1 RMU /UNLOAD /AFTER_JOURNAL Database Metadata File

Previously, the RMU /UNLOAD /AFTER_JOURNAL command always required
the source database when unloading data from after-image journal files. The
database is used to read metadata (information about tables and the physical
database structure) required in order to reconstruct records.

As of Oracle Rdb7 Release 7.0.6.1, the RMU /UNLOAD /AFTER_JOURNAL
command now supports the ability to read the database and then store a static
copy of the data required. This stored copy can then be used in place of the
database when executing the RMU /UNLOAD /AFTER_JOURNAL command
to unload data. In this way, the original database need not be required when
reading the after-image journal files; only the saved metadata information is
needed.

Two new qualifiers have been added to the RMU /UNLOAD /AFTER_JOURNAL
command: ‘‘/SAVE_METADATA = filename’’ and ‘‘/RESTORE_METADATA =
filename’’.

• SAVE_METADATA=filename

This qualifier indicates that the RMU /UNLOAD /AFTER_JOURNAL
command is to write metadata information to the specified file. The
RESTORE_METADATA, TABLE and OPTIONS=FILE qualifiers and the
AIJ_NAME parameter are not allowed when the SAVE_METADATA qualifier
is present. The default file type is ‘‘.METADATA’’.

• RESTORE_METADATA=filename

This qualifier indicates that the RMU /UNLOAD /AFTER_JOURNAL
command is to read database metadata information from the specified
file. The DATABASE parameter is required but the database itself is not
accessed when the RESTORE_METADATA qualifier is specified. The default
file type is ‘‘.METADATA’’.

Because the database is not available when the RESTORE_METADATA qualifier
is specified, certain database-specific actions can not be taken. For example,
checks for after-image journaling are disabled. And because the static copy of the
metadata information is not updated as database structure and table changes are
made, it is important to make sure that the metadata file is saved after database
DML operations.

Enhancements 4–7

When the RESTORE_METADATA=filename qualifier is specified, additional
checks are made to ensure that the after-image journal files were created using
the same database that was used to create the metadata file. This provides
additional security and helps prevent accidental mismatching of files.

The metadata information file used by the RMU /UNLOAD /AFTER_JOURNAL
command is in an internal binary format. The contents and format are not
documented and are not directly accessible by other utilities. Further, the content
and format of the metadata information file is specific to a version of the RMU
/UNLOAD /AFTER_JOURNAL utility. As new versions and updates of Oracle
Rdb are released, the metadata information file will likely need to re-created. The
same version of Rdb must be used to both write and read a metadata information
file. The RMU /UNLOAD /AFTER_JOURNAL verifies the format and version of
the metadata information file and issues an error message in the case of a version
mismatch.

The following example creates a metadata file for the database MFP. This
metadata file can be used as input to a later RMU /UNLOAD /AFTER_JOURNAL
command.

$ RMU /UNLOAD /AFTER_JOURNAL MFP /SAVE_METADATA=MF_MFP.METADATA /LOG
%RMU-I-LMMFWRTCNT, Wrote 107 objects to metadata file
"DUA0:[DB]MFMFP.METADATA;1"

This example uses a previously created metadata information file for the database
MFP. The database is not accessed during the unload operation; the database
metadata information is read from the file. As the extract operation no longer
directly relies on the source database, the AIJ and METADATA files can be moved
to another system and extracted there.

$ RMU /UNLOAD /AFTER_JOURNAL /RESTORE_METADATA=MF_MFP.METADATA -
MFP AIJ_BACKUP1 /TABLE=(NAME=TAB1, OUTPUT=TAB1) /LOG

%RMU-I-LMMFRDCNT, Read 107 objects from metadata file
"DUA0:[DB]MF_MFP.METADATA;1"
%RMU-I-UNLAIJFL, Unloading table TAB1 to DUA0:[DB]TAB1.DAT;1
%RMU-I-LOGOPNAIJ, opened journal file DUA0:[DB]AIJ_BACKUP1.AIJ;1
%RMU-I-AIJRSTSEQ, journal sequence number is "7216321"
%RMU-I-AIJMODSEQ, next AIJ file sequence number will be 7216322
%RMU-I-LOGSUMMARY, total 2 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
--
ELAPSED: 0 00:00:00.15 CPU: 0:00:00.01 BUFIO: 11 DIRIO: 5 FAULTS: 28
Table "TAB1" : 1 record written (1 modify, 0 delete)
Total : 1 record written (1 modify, 0 delete)

For debugging purposes, the contents of a metadata information file can be
formatted and displayed using the /OPTIONS=DUMP qualifier with the
/RESTORE_METADATA qualifier. This dump may be helpful to Oracle Support
Engineers during problem analysis. The contents and format of the metadata
information file are subject to change.

4–8 Enhancements

5
Documentation Corrections

This chapter provides information not currently available in the Oracle Rdb7
documentation set.

5.1 Documentation Corrections
5.1.1 Clarification of SET FLAGS Option DATABASE_PARAMETERS

Bug 1668049

The Oracle Rdb7 SQL Reference Manual describes the option DATABASE_
PARAMETERS in Table 7-6 in the SET FLAGS section. However, this keyword
generates output only during ATTACH to the database which happens prior to
the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS
logical name which provides similar functionality.

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach ’File db$:scratch’;
ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
DETACH #1

5.1.2 The Halloween Problem
When a cursor is processing rows selected from a table, it is possible that another
separate query can interfere with the retrieval of the cursor by modifying the
index column’s key values used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= ’M’, it
is likely that the query will use the sorted index on LAST_NAME to retrieve
the rows for the cursor. If an update occurs during the processing of the cursor
which changes the LAST_NAME of an employee from "Mason" to "Rickard", then
it is possible that that employee row will be processed twice. First, when it is
fetched with name "Mason", and then later when it is accessed by the new name
"Rickard".

Documentation Corrections 5–1

The Halloween problem is a well known problem in relational databases. Access
strategies which optimize the I/O requirements, such as Index Retrieval, can be
subject to this problem. Interference from queries by other sessions are avoided
by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will
be updated. For example, if the SQL syntax UPDATE ... WHERE CURRENT
OF is used to perform updates of target rows, or if the RDO/RDML MODIFY
statement uses the context variable for the stream. Then the optimizer will
choose an alternate access strategy if an update can occur which may cause the
Halloween problem. This can be seen in the access strategy in the example below
as a "Temporary relation" being created to hold the result of the cursor query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT
OF or DELETE ... WHERE CURRENT OF statements will not be seen until after
the cursor is declared and opened. In these environments, you must use the FOR
UPDATE clause to specify that columns selected by the cursor will be updated
during cursor processing. This is an indication to the Rdb optimizer so that it
protects against the Halloween problem in this case. This is shown in the two
examples below Example 5–1 and Example 5–2.

Example 5–1 shows that the EMP_LAST_NAME index is used for retrieval. Any
update performed will possibly be subject to the Halloween problem.

Example 5–1 Interactive Cursor with no Halloween Protection

SQL> set flags ’strategy’;
SQL> declare emp cursor for
cont> select * from employees where last_name >= ’M’
cont> order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]

SQL> close emp;

Example 5–2 shows that the query specifies that the column LAST_NAME will
be updated by some later query. Now the optimizer protects the EMP_LAST_
NAME index used for retrieval by using a "Temporary Relation" to hold the query
result set. Any update performed on LAST_NAME will now avoid the Halloween
problem.

Example 5–2 Interactive Cursor with Halloween Protection

SQL> set flags ’strategy’;
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= ’M’
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]

SQL> close emp2;

5–2 Documentation Corrections

When you use the SQL precompiler or the SQL module language compiler, it can
be determined from usage that the cursor context will possibly be updated during
the processing of the cursor because all cursor related statements are present
within the module. This is also true for the RDML/RDBPRE precompilers when
you use the DECLARE_STREAM and START_STREAM statements and use the
same stream context to perform all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the
SQL cursor (or RDO stream), not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from
the cursor, then the actual rows fetched will depend upon the access strategy
chosen by the Rdb optimizer. As the query is separate from the cursors query (i.e.
doesn’t reference the cursor context) then the optimizer does not know that the
cursor selected rows are potentially updated and so can not perform the normal
protection against the Halloween problem.

5.1.3 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
Bug 1495227

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, Page
A-18, incorrectly describes the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior
between what is in the existing documentation and software is that the logical
name only controls the number of database recovery processes created at once
during "node failure" recovery (that is, after a system or monitor crash or other
abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system
failure), the database will have to be recovered in a "node failure" recovery mode.
This recovery will be performed by another monitor in the cluster if the database
is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_
DBR_COUNT configuration parameter define the maximum number of database
recovery (DBR) processes to be simultaneously invoked by the database monitor
during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do
not have global buffers enabled. Databases that utilize global buffers have only
one recovery process started at a time during a "node failure" recovery.

In a "node failure" recovery situation with the Row Cache feature enabled
(regardless of the global buffer state), the database monitor will start a single
database recovery (DBR) process to recover the Row Cache Server (RCS) process
and all user processes from the oldest active checkpoint in the database.

5.1.4 RMU /UNLOAD /AFTER_JOURNAL NULL Bit Vector Clarification
Each output record from the RMU /UNLOAD /AFTER_JOURNAL command
includes a vector (array) of bits. There is one bit for each field in the data record.
If a null bit value is 1, the corresponding field is NULL; if a null bit value is
0, the corresponding field is not NULL and contains an actual data value. The
contents of a data field that is NULL are not initialized and are not predictable.

Documentation Corrections 5–3

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN
indicates the number of valid bits (and thus, the number of columns in the table).
Any extra bits in the final byte of the vector after the final null bit are unused
and the contents are unpredictable.

The following example C program demonstrates one possible way of reading
and parsing a binary output file (including the null bit vector) from the RMU
/UNLOAD /AFTER_JOURNAL command. This sample program has been tested
using Oracle Rdb V7.0.5 and Compaq C V6.2-009 on OpenVMS Alpha V7.2-1. It
is meant to be used as a template for writing your own program.

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
unsigned short lno; /* line number */
unsigned int pno; /* page number */
unsigned short dbid; /* area number */
} dbkey;

typedef struct { /* Null bit vector with one bit for each column */
unsigned n_tinyint :1;
unsigned n_smallint :1;
unsigned n_integer :1;
unsigned n_bigint :1;
unsigned n_double :1;
unsigned n_real :1;
unsigned n_fixstr :1;
unsigned n_varstr :1;
} nbv_t;

struct { /* LogMiner output record structure for table DATATYPES */
char rdb$lm_action;
char rdb$lm_relation_name [31];
int rdb$lm_record_type;
short rdb$lm_data_len;
short rdb$lm_nbv_len;
__int64 rdb$lm_dbk;
__int64 rdb$lm_start_tad;
__int64 rdb$lm_commit_tad;
__int64 rdb$lm_tsn;
short rdb$lm_record_version;
char f_tinyint;
short f_smallint;
int f_integer;
__int64 f_bigint;
double f_double;
float f_real;
char f_fixstr[10];
short f_varstr_len; /* length of varchar */
char f_varstr[10]; /* data of varchar */
nbv_t nbv;
} lm;

#pragma member_alignment __restore

5–4 Documentation Corrections

main ()
{ char timbuf [24];

struct dsc$descriptor_s dsc = {
23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};

FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin");

memset (&timbuf, 0, sizeof(timbuf));

while (fread (&lm, sizeof(lm), 1, fp) != 0)
{

printf ("Action = %c\n", lm.rdb$lm_action);
printf ("Table = %.*s\n", sizeof(lm.rdb$lm_relation_name),

lm.rdb$lm_relation_name);
printf ("Type = %d\n", lm.rdb$lm_record_type);
printf ("Data Len = %d\n", lm.rdb$lm_data_len);
printf ("Null Bits = %d\n", lm.rdb$lm_nbv_len);

memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk));
printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,

dbkey.pno,
dbkey.lno);

sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0);
printf ("Start TAD = %s\n", timbuf);

sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0);
printf ("Commit TAD = %s\n", timbuf);

printf ("TSN = %Ld\n", lm.rdb$lm_tsn);
printf ("Version = %d\n", lm.rdb$lm_record_version);

if (lm.nbv.n_tinyint == 0)
printf ("f_tinyint = %d\n", lm.f_tinyint);

else printf ("f_tinyint = NULL\n");

if (lm.nbv.n_smallint == 0)
printf ("f_smallint = %d\n", lm.f_smallint);

else printf ("f_smallint = NULL\n");

if (lm.nbv.n_integer == 0)
printf ("f_integer = %d\n", lm.f_integer);

else printf ("f_integer = NULL\n");

if (lm.nbv.n_bigint == 0)
printf ("f_bigint = %Ld\n", lm.f_bigint);

else printf ("f_bigint = NULL\n");

if (lm.nbv.n_double == 0)
printf ("f_double = %f\n", lm.f_double);

else printf ("f_double = NULL\n");

if (lm.nbv.n_real == 0)
printf ("f_real = %f\n", lm.f_real);

else printf ("f_real = NULL\n");

if (lm.nbv.n_fixstr == 0)
printf ("f_fixstr = %.*s\n", sizeof (lm.f_fixstr),

lm.f_fixstr);
else printf ("f_fixstr = NULL\n");

if (lm.nbv.n_varstr == 0)
printf ("f_varstr = %.*s\n", lm.f_varstr_len, lm.f_varstr);

else printf ("f_varstr = NULL\n");

printf ("\n");
}

}

Documentation Corrections 5–5

Example sequence of commands to create a table, unload the data and display
the contents with this program:

SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> CREATE TABLE DATATYPES (

F_TINYINT TINYINT
,F_SMALLINT SMALLINT
,F_INTEGER INTEGER
,F_BIGINT BIGINT
,F_DOUBLE DOUBLE PRECISION
,F_REAL REAL
,F_FIXSTR CHAR (10)
,F_VARSTR VARCHAR (10));

SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, ’THIS’, NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, ’THAT’);
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ -

/TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

5.1.5 Location of Host Source File Generated by the SQL Precompilers
Bug 478898

When the SQL precompiler generates host source files (like .c, .pas, .for) from the
precompiler source files, it locates these files based on the /obj qualifier located on
the command line given to the SQL precompiler.

The following examples show the location where the host source file is generated.
When /obj is not specified on the command line, the object and the host source file
take the name of the SQL precompiler source files with the extensions of .obj and
.c respectively.

LUND> sqlpre/cc scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

When /obj is specified on the command line, the object and the host source
take the name given on the qualifier switch. It uses the default of the SQL
precompiler source if a filespec is not specified. It uses the defaults of .obj and .c
if the extension is not specified. If the host language is other than C, then it uses
the appropriate host source extension (like .pas, .for, etc). The files also default to
the current directory if a directory spec is not specified.

LUND> sqlpre/cc/obj=myobj scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir myobj.*

Directory MYDISK:[LUND]

MYOBJ.C;1 MYOBJ.OBJ;2

5–6 Documentation Corrections

Total of 2 files.

LUND> sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
LUND> dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
LUND> dir MYDISK:[lund.tmp]scc_try_mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

This problem has been corrected in Oracle Rdb7 Release 7.0.6.

5.1.6 Suggestion to Increase GH_RSRVPGCNT Removed
The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains
a section titled "Installing Oracle Rdb Images as Resident on OpenVMS Alpha"
that includes information about increasing the value of the OpenVMS system
parameter GH_RSRVPGCNT when you modify the RMONSTART.COM or
SQL$STARTUP.COM procedures to install Rdb images with the /RESIDENT
qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only ever required if
the RMONSTART.COM or SQL$STARTUP.COM procedures have been manually
modified to install Rdb images with the /RESIDENT qualifier. Furthermore,
if the RMONSTART.COM and SQL$STARTUP.COM procedures are executed
during the system startup procedure (directly from SYSTARTUP_VMS.COM, for
example), then there is no need to modify the GH_RSRVPGCNT parameter.

Oracle and Compaq suggest that you do not modify the value of the GH_
RSRVPGCNT system parameter unless it is absolutely required. Some versions
of OpenVMS on some hardware platforms require that GH_RSRVPGCNT be zero
in order to ensure the highest level of system performance.

5.1.7 Clarification of the DDLDONOTMIX Error Message
Bug 454080

The ALTER DATABASE statement performs two classes of functions: changing
the database root structures in the .RDB file and modifying the system metadata
in the RDB$SYSTEM storage area. The first class of changes do not require a
transaction to be active. However, the second class requires that a transaction be
active. Oracle Rdb does not currently support the mixing of these two classes of
ALTER DATABASE clauses.

When you mix clauses that fall into both classes, the error message
DDLDONOTMIX "the {SQL-syntax} clause can not be used with some ALTER
DATABASE clauses" is displayed, and the ALTER DATABASE statement fails.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB-F-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-E-DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

Documentation Corrections 5–7

The following clauses may be mixed with each other but may not appear with
other clauses such as ADD STORAGE AREA, or ADD CACHE.

DICTIONARY IS [NOT] REQUIRED

DICTIONARY IS NOT USED

MULTISCHEMA IS { ON | OFF }

CARDINALITY COLLECTION IS { ENABLED | DISABLED }

METADATA CHANGES ARE { ENABLED | DISABLED }

WORKLOAD COLLECTION IS { ENABLED | DISABLED }

If the DDLDONOTMIX error is displayed, then restructure the ALTER
DATABASE into two statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

5.1.8 Compressed Sorted Index Entry Stored in Incorrect Storage Area
This note was originally included in the Oracle Rdb7 Release 7.0.1.3 and 7.0.2
Release Notes. The logical name documented in the note for those releases was
documented incorrectly. Below is a corrected note.

In specific cases, in versions V6.1 and V7.0 of Oracle Rdb, when a partitioned,
compressed sorted index was created after the data was inserted into the table,
b-tree entries may have been inserted into the wrong storage area.

All of the following criteria must be met in order for the possibility of this problem
to occur:

• CREATE INDEX is issued after there are records already in the table on
which the index is being created

• index must be partitioned over a single column

• index must have compression enabled

• scale factor must be zero on the columns of the index

• no collating sequences specified on the columns of the index

• no descending indexes

• MAPPING VALUES must not be specified

RMU/DUMP/AREA=xx will show that the b-tree entry was not stored in the
expected storage area. However, in versions V6.1 and V7.0 of Oracle Rdb, the
rows of the table can still be successfully retrieved.

The following example shows the problem:

create database
filename foo

create storage area Area_1
filename Area_1

create storage area Area_2
filename Area2;

create table T1
(C1 integer);

5–8 Documentation Corrections

! insert data into table prior to index creation
insert into T1 values (0);
commit;

! create index with COMPRESSION ENABLED
create index Index_1

on T1 (C1)
enable compression
store using (C1)

in Area_1 with limit of (0)
otherwise in Area_2;

COMMIT;
!
! Dump out the page for b-tree in AREA_1, there are 0 bytes stored.
! There should be 5 bytes stored for the b-tree entry.
!
RMU/DUMP/AREA=AREA_1
.
.
. total B-tree node size: 430

0030 2003 0240 line 0 (2:5:0) index: set 48
002F FFFFFFFF FFFF 0244 owner 47:-1:-1

0000 024C 0 bytes of entries <---***** no entry
8200 024E level 1, full suffix

00000000000000000000000000000000 0250 unused ’................’
.
.
.
!
! Dump out the page for b-tree in AREA_2, there are 5 bytes stored
!
RMU/DUMP/AREA=AREA_2
.
.
. total B-tree node size: 430

0031 2003 0240 line 0 (3:5:0) index: set 49
002F FFFFFFFF FFFF 0244 owner 47:-1:-1

000A 024C 10 bytes of entries
8200 024E level 1, full suffix
00 05 0250 5 bytes stored, 0 byte prefix <---entry

0100008000 0252 key ’.....’
22B1 10 0257 pointer 47:554:0

.

.

.

This problem occurs when index compression is enabled. Therefore, a workaround
is to create the index with compression disabled (which is the default). Once this
update kit is applied, it is recommended that the index be dropped and recreated
with compression enabled to rebuild the b-tree.

Note

In prior versions, the rows were successfully retrieved even though the
key values were stored in the wrong storage area. This was due to the
range query algorithm skipping empty partitions or scanning extra areas.

However, due to an enhancement in the algorithm for range queries on
partitioned SORTED indexes in Oracle Rdb7 Relese 7.0.2, the rows of the
table which are stored in the incorrect storage areas may not be retrieved
when using the partitioned index.

The optimized algorithm now only scans the relevant index areas (and
no longer skips over emtpy areas) resulting in only those rows being
returned. Therefore, it is recommended that the index be dropped and

Documentation Corrections 5–9

re-created. For a short term solution, another alternative is to disable the
new optimization by defining the logical RDMS$INDEX_PART_CHECK to
0.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.3.

5.1.9 Partition Clause is Optional on CREATE STORAGE MAP
Bug 642158

In the Oracle Rdb7 SQL Reference Manual, the syntax diagram for the CREATE
STORAGE MAP statement incorrectly shows the partition clause as required
syntax. The partition clause is not a required clause.

This correction will appear in the next publication of the Oracle Rdb SQL
Reference Manual.

5.1.10 Oracle Rdb Logical Names
The Oracle Rdb7 Guide to Database Performance and Tuning contains a table
in Chapter 2 summarizing the Oracle Rdb logical names and configuration
parameters. The information in the following table supersedes the entries for the
RDM$BIND_RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT
logical names.

Logical Name
Configuration Parameter Function

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of the
.ruj file. The block count value can be defined
between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre-extend the .ruj files for each
process using a database. The block count value
can be defined between 0 and 65535 with a
default of 127.

5.1.11 Waiting for Client Lock Message
The Oracle Rdb7 Guide to Database Performance and Tuning contains a section
in Chapter 3 that describes the Performance Monitor Stall Messages screen. The
section contains a list describing the ‘‘Waiting for’’ messages. The description of
the ‘‘waiting for client lock’’ message was missing from the list.

A client lock indicates that an Oracle Rdb metadata lock is in use. The term
client indicates that Oracle Rdb is a client of the Oracle Rdb locking services.
The metadata locks are used to guarantee memory copies of the metadata (table,
index, and column definitions) are consistent with the on-disk versions.

The ‘‘waiting for client lock’’ message means the database user is requesting an
incompatible locking mode. For example, when trying to delete a table which is
in use, the drop operation requests a PROTECTED WRITE lock on the metadata
object (such as a table) which is incompatible with the existing PROTECTED
READ lock currently used by others of the table.

These metadata locks consist of three longwords. The lock is displayed in text
format first, followed by its hexadecimal representation. The text version masks
out nonprintable characters with a period (.).

5–10 Documentation Corrections

The leftmost value seen in the hexadecimal output contains the ID of the object.
The following ID describes the tables, routines, modules and storage map areas.

• For tables and views, the ID represents the unique value found in the
RDB$RELATION_ID column of the RDB$RELATIONS system table for the
given table.

• For routines, the ID represents the unique value found in the
RDB$ROUTINE_ID column of the RDB$ROUTINES system table for the
given routine.

• For modules, the ID represents the unique value found in the
RDB$MODULE_ID column of the RDB$MODULES system table for the
given module.

• For storage map areas, the ID presents the physical area ID. The ‘‘waiting for
client lock’’ message on storage map areas is very rare. This may be raised
for databases that have been converted from versions prior to Oracle Rdb 5.1.

The next value displayed signifies the object type. The following table describes
objects and their hexadecimal type values:

Table 5–1 Object Type Values

Object Hexadecimal Value

Tables or views 00000004

Routines 00000006

Modules 00000015

Storage map areas 0000000E

The last value in the hexadecimal output represents the lock type. The value 55
indicates this is a client lock.

The following example shows a ‘‘waiting for client’’ lock message from the Stall
Messages screen:

Process.ID Since...... Stall.reason............................. Lock.ID.
46001105:2 10:40:46.38 - waiting for client ’........’ 000000190000000400000055

1 2 3 4

The following list describes each part of the client lock:

1 indicates nonprintable characters.

2 00000019 indicates unique identifier hex value 19 (RDB$RELATION_ID =
25).

3 00000004 indicates object type 4 which is a table.

4 00000055 indicates this is a client lock.

To determine the name of the referenced object given the Lock ID the following
queries can be used based on the object type:

SQL> SELECT RDB$RELATION_NAME FROM RDB$RELATIONS WHERE RDB$RELATION_ID = 25;
SQL> SELECT RDB$MODULE_NAME FROM RDB$MODULES WHERE RDB$MODULE_ID = 12;
SQL> SELECT RDB$ROUTINE_NAME FROM RDB$ROUTINES WHERE RDB$ROUTINE_ID = 7;

Note

Because the full client lock output is long, it may require more space than

Documentation Corrections 5–11

is allotted for the Stall.reason column and therefore can be overwritten by
the Lock.ID. column output.

For more detailed lock information, perform the following steps:

1. Press the L option from the horizontal menu to display a menu of
Lock IDs.

2. Select the desired Lock ID.

5.1.12 Documentation Error in Oracle Rdb7 Guide to Database Performance
and Tuning

The Oracle Rdb7 Guide to Database Performance and Tuning, Volume 2 contains
an error in section C.7, ‘‘Displaying Sort Statistics with the R Flag’’.

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort
operation. A zero (0) value indicates that the sort was accomplished
completely in memory.

This is incorrect. This statistic should be described as shown:

Work File Alloc indicates how much space (in blocks) was allocated in the
work files for this sort operation. A zero (0) value indicates that the sort was
accomplished completely in memory.

This error will be corrected in a future release of Oracle Rdb Guide to Database
Performance and Tuning.

5.1.13 SET FLAGS Option IGNORE_OUTLINE Not Available
Bug 510968

The Oracle Rdb7 SQL Reference Manual described the option IGNORE_
OUTLINE in Table 7-6 of the SET FLAGS section. However, this keyword
was not implemented in Oracle Rdb7.

This has been corrected in this release of Oracle Rdb7. This keyword is now
recognized by the SET FLAGS statement. As a workaround the logical name
RDMS$BIND_OUTLINE_FLAGS "I" can be used to set this attribute.

5.1.14 SET FLAGS Option INTERNALS Not Described
The Oracle Rdb7 SQL Reference Manual does not describe the option
INTERNALS in Table 7-6 in the SET FLAGS section. This keyword was available
in first release of Oracle Rdb7 and is used to enable debug flags output for
internal queries such as constraints and triggers. It can be used in conjunction
with other options such as STRATEGY, BLR, and EXECUTION. For example, the
following flag settings are equivalent to defining the RDMS$DEBUG_FLAGS as
ISn and shows the strategy used by the trigge’s actions on the AFTER DELETE
trigger on the EMPLOYEES table.

SQL> SET FLAGS ’STRATEGY, INTERNAL, REQUEST_NAME’;
SQL> SHOW FLAGS

5–12 Documentation Corrections

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES
Index name DEG_EMP_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS
Index name DEPARTMENTS_INDEX [0:0]

Temporary relation Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

1 row deleted

5.1.15 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS
The SET FLAGS section of the Oracle Rdb7 SQL Reference Manual omitted
the description of the VALIDATE_ROUTINE keyword (which can be negated
as NOVALIDATE_ROUTINE). This keyword enables the re-validation of an
invalidated stored procedure or function. This flag has the same action as the
logical RDMS$VALIDATE_ROUTINE described in the Oracle Rdb7 Guide to
Database Performance and Tuning.

This example shows the re-validation of a stored procedure. When the stored
routine is successfully prepared (but not executed), the setting of VALIDATE_
ROUTINE causes the entry for this routine in the RDB$ROUTINES system table
to be set as valid.

SQL> SET TRANSACTION READ WRITE;
SQL> SET FLAGS ’VALIDATE_ROUTINE’;
SQL> SET NOEXECUTE;
SQL> CALL ADD_EMPLOYEE (’Smith’);
SQL> SET EXECUTE;
SQL> COMMIT;

In this example, the use of the SET NOEXECUTE statement in interactive SQL
allows the stored routine to be successfully compiled, but it is not executed.

5.1.16 Documentation for Defining the RDBSERVER Logical Name
Bugs 460611 and 563649.

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide provide the following examples for defining the RDBSERVER
logical name:

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE
and

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt
to reference the RDBSERVERxx.EXE image. The following is one example where
the RDBSERVER.COM procedure references SYS$COMMON:<SYSEXE> and
SYS$COMMON:[SYSEXE], rather than SYS$SYSTEM:

Documentation Corrections 5–13

$ if .not. -
((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. -
(f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))

$ then
$ say "’’rdbserver_image’ is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ’’rdbserver_image’"
$ exit
$ endif

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for
OpenVMS Installation and Configuration Guide, the image would not be found.

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide should
define the logical name as follows:

DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER70.EXE
and
DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

5.1.17 Undocumented SET Commands and Language Options
The following SET statements were omitted from the Oracle Rdb7
documentation.

5.1.17.1 QUIET COMMIT Option
The SET QUIET COMMIT statement (for interactive and dynamic SQL), the
module header option QUIET COMMIT, the /QUIET_COMMIT (and /NOQUIET_
COMMIT) qualifier for SQL module language, or the /SQLOPTIONS=QUIET_
COMMIT (and NOQUIET_COMMIT) option for the SQL language precompiler
allows the programmer to control the behavior of the COMMIT and ROLLBACK
statements in cases where there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when
COMMIT or ROLLBACK is executed. This default is retained for backward
compatibility for applications that may wish to detect the situation. If QUIET
COMMIT is set to ON, then a COMMIT or ROLLBACK executes successfully
when there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK statements
in this case are ignored.

Examples
In interactive or dynamic SQL, the following SET command can be used to disable
or enable error reporting for COMMIT and ROLLBACK when no transaction is
active. The parameter to the SET command is a string literal or host variable
containing the keyword ON or OFF. The keywords may be in any case (upper,
lower, or mixed).

SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT ’on’;
SQL> ROLLBACK;
SQL> COMMIT;
SQL> SET QUIET COMMIT ’off’;
SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding

5–14 Documentation Corrections

In the SQL module language or precompiler header, the clause QUIET COMMIT
can be used to disable or enable error reporting for COMMIT and ROLLBACK
when no transaction is active. The keyword ON or OFF must be used to enable
or disable this feature. The following example enables QUIET COMMIT so that
no error is reported if a COMMIT is executed when no transaction is active. For
example:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

5.1.17.2 COMPOUND TRANSACTIONS Option
The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic
SQL) and the module header option COMPOUND TRANSACTIONS allows the
programmer to control the SQL behavior for starting default transactions for
compound statements.

By default, if there is no current transaction, SQL will start a transaction before
executing a compound statement or stored procedure. However, this may conflict
with the actions within the procedure, or may start a transaction for no reason if
the procedure body does not perform any database access. This default is retained
for backward compatibility for applications that may expect a transaction to be
started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, then SQL starts a
transaction before executing the procedure; otherwise, if it is set to INTERNAL,
it allows the procedure to start a transaction as required by the procedure
execution.

Examples
In interactive or dynamic SQL, the following SET command can be used to disable
or enable transactions started by the SQL interface. The parameter to the SET
command is a string literal or host variable containing the keyword INTERNAL
or EXTERNAL. The keywords may be in any case (upper, lower, or mixed). For
example:

SQL> SET COMPOUND TRANSACTIONS ’internal’;
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS ’external’;
SQL> CALL UPDATE_EMPLOYEES (...);

In the SQL module language or precompiler header, the clause COMPOUND
TRANSACTIONS can be used to disable or enable starting a transaction for
procedures. The keyword INTERNAL or EXTERNAL must be used to enable or
disable this feature.

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

Documentation Corrections 5–15

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

5.1.18 Undocumented Size Limit for Indexes with Keys Using Collating
Sequences

Bug 586079

When a column is defined with a collating sequence, the index key is specially
encoded to incorporate the correct ordering (collating) information. This special
encoding takes more space than keys encoded for ASCII (the default when no
collating sequence is used). Therefore, the encoded string uses more than the
customary one byte per character of space within the index. This is true for all
versions of Oracle Rdb that support collating sequences.

For all collating sequences, except Norwegian, the space required is
approximately 9 bytes for every 8 characters. So, a CHAR (24) column will
require approximately 27 bytes. For Norwegian collating sequences, the space
required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when
calculating the size of an index key against the limit of 255 bytes. Suppose a
column defined with a collating sequence of GERMAN was used in an index. The
length of that column is limited to a maximum of 225 characters because the key
will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a
German collating sequence and included in an index, exceeds the index size limit
of 255 bytes, even though the column is defined as less than 255 characters in
length:

SQL> CREATE DATABASE
cont> FILENAME ’TESTDB.RDB’
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> CREATE TABLE EMPLOYEE_INFO (
cont> EMP_NAME CHAR (233));
SQL> CREATE INDEX EMP_NAME_IDX
cont> ON EMPLOYEE_INFO (
cont> EMP_NAME ASC)
cont> TYPE IS SORTED;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

5.1.19 Changes to RMU/REPLICATE AFTER/BUFFERS Command
The behavior of the RMU/REPLICATE AFTER/BUFFERS command has been
changed. The /BUFFERS qualifier may be used with either the CONFIGURE
option or the START option.

When using local buffers, the AIJ log roll-forward server (LRS) will use a
minimum of 4096 buffers. The value provided to the /BUFFERS qualifier will
be accepted, but it will be ignored if it is less than 4096. In addition, further
parameters will be checked and the number of buffers may be increased if the
resulting calculations are greater than the number of buffers specified by the
/BUFFERS qualifier. If the database is configured to use more than 4096 AIJ
request blocks (ARBs), then the number of buffers may be increased to the
number of ARBs configured for the database. The LRS ensures that there are at
least 10 buffers for every possible storage area in the database. Thus, if the total

5–16 Documentation Corrections

number of storage areas (both used and reserved) multiplied by 10 results in a
greater number of buffers, that number will be used.

When global buffers are used, the number of buffers used by the AIJ log roll-
forward server is determined as follows:

• If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is specified,
the number of buffers will default to the previously configured value, if any,
or 256, whichever is larger.

• If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is not
specified or the /NOONLINE is specified, the number of buffers will default to
the maximum number of global buffers allowed per user (‘‘USER LIMIT’’), or
256, whichever is larger.

• If the /BUFFERS qualifier is specified, that value must be at least 256, and it
may not be greater than the maximum number of global buffers allowed per
user (‘‘USER LIMIT’’).

The /BUFFER qualifier now enforces a minimum of 256 buffers for the AIJ log
roll-forward server. The maximum number of buffers allowed is still 524288
buffers.

5.1.20 Change in the Way RDMAIJ Server is Set Up in UCX
Starting with Oracle Rdb V7.0.2.1, the RDMAIJ image has become a varianted
image. Therefore, the information in section 2.12, ‘‘Step 10: Specify the Network
Transport Protocol,’’ of the Oracle Rdb7 and Oracle CODASYL DBMS Guide
to Hot Standby Databases has become outdated in regards to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The
UCX SET SERVICE command should now look similar to the following:

$ UCX SET SERVICE RDMAIJ -
/PORT=<port_number> -
/USER_NAME=RDMAIJ -
/PROCESS_NAME=RDMAIJ -
/FILE=SYS$SYSTEM:RDMAIJSERVER.com -
/LIMIT=<limit>

And for Oracle Rdb multiversion, it should look similar to the following:

$ UCX SET SERVICE RDMAIJ70 -
/PORT=<port_number> -
/USER_NAME=RDMAIJ70 -
/PROCESS_NAME=RDMAIJ70 -
/FILE=SYS$SYSTEM:RDMAIJSERVER70.com -
/LIMIT=<limit>

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn)
and places a file called RDMAIJSERVER(nn).com in SYS$SYSTEM and the
RMONSTART(nn).COM command procedure will try to enable a service called
RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a multivarianted image does not impact
installations using DECNet since the correct DECNet object is created during the
Rdb installation.

Documentation Corrections 5–17

5.1.21 CREATE INDEX Supported for Hot Standby
On page 1-13 of the Guide to Hot Standby Databases, the add new index operation
is incorrectly listed as an offline operation not supported by Hot Standby. The
CREATE INDEX operation is now fully supported by Hot Standby, as long as the
transaction does not span all available AIJ journals, including emergency AIJ
journals.

5.1.22 Dynamic OR Optimization Formats
Bug 711643

In Table C-2 on Page C-7 of the Oracle Rdb7 Guide to Database Performance
and Tuning, the dynamic OR optimization format is incorrectly documented as
[l:h...]n. The correct formats for Oracle Rdb Release 7.0 and later are [(l:h)n] and
[l:h,l2:h2].

5–18 Documentation Corrections

6
Known Problems and Restrictions

This chapter describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.6.2.

6.0.1 Running Rdb Applications With the VMS Heap Analyzer
When trying to debug an Rdb application under the OpenVMS Heap Analyzer (by
defining LIBRTL as SYS$LIBRARY:LIBRTL_INSTRUMENTED), the software
will not attach to the database, and returns

RDB-E-UNAVAILABLE, Oracle Rdb is not available on your system

as if RDB is not running.

To solve this problem, there are two executables that must be installed as known
images:

$install add sys$share:librtl_instrumented
$install add sys$share:dgit$libshr12

The error is misleading. Since parts of Rdb are installed as privileged images,
any shareable images it references, AND any images they, in turn, reference,
must also be ’known’. By redirecting LIBRTL to SYS$LIBRARY:LIBRTL_
INSTRUMENTED, these extra images are referenced. If Rdb had directly
referenced the new image, a more accurate error, such as:

%DCL-W-ACTIMAGE, error activating image xxxxx

would have been reported.

6.0.2 RMU/RECOVER/AREA Needs Area List
Bug 1778243

When doing an RMU/RECOVER/AREA, without specifying a list of area names,
there will be a new version of the current active AIJ file created. This new
version of the AIJ will have the next recovery sequence number. If a subsequent
recovery is applied, an error is generated indicating that the original recovery
sequence number cannot be found and the recovery will abort.

If a list of storage areas to be recovered is supplied, this behaviour does not occur
and no new version of the journal is created. It is recommended as best practice
to use a list of storage areas when recovering by area to avoid any subsequent
confusion during recovery.

6.0.3 PAGE TRANSFER VIA MEMORY Disabled
Oracle internal testing has revealed that the "PAGE TRANSFER VIA MEMORY"
option for global buffers is not as robust as is needed for the Mission Critical
environments where Oracle Rdb7 is often deployed. This feature has been
disabled in Oracle Rdb7 Version 7.0.xx. Oracle intends to re-enable this feature
in a future Version 7.1 release.

Known Problems and Restrictions 6–1

6.0.4 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors
RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when
verifying storage areas. These errors indicate that the Space Area Management
(‘‘SPAM’’) page fullness threshold for a particular data page does not match the
actual space usage on the data page. For a further discussion of SPAM pages,
consult the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the
database. There is potential for space on the data page to not be totally utilized,
or for a small amount of extra I/O to be expended when searching for space in
which to store new rows. But unless there are many of these errors then the
impact should be negligible.

It is possible for these inconsistencies to be introduced by errors in the Oracle
Rdb7 product. When those cases are discovered, Oracle Rdb7 is corrected to
prevent the introduction of the inconsistencies. It is also possible for these errors
to be introduced during the normal operation of the product. The following
scenario can leave the SPAM pages inconsistent:

1. A process inserts a row on a page, and updates the threshold entry on the
corresponding SPAM page to reflect the new space utilization of the data
page. The data page and SPAM pages are not flushed to disk.

2. Another process notifies the first process that it would like to access the
SPAM page being held by the process. The first process flushes the SPAM
page changes to disk and releases the page. Note that it has not flushed the
data page.

3. The first process then terminates abnormally (for example, from the DCL
STOP/IDENTIFICATION command). Since that process never flushed the
data page to disk, it never wrote the changes to the Recovery Unit Journal
(RUJ) file. Since there were no changes in the RUJ file for that data page,
then the Database Recovery (‘‘DBR’’) process did not need to rollback any
changes to the page. The SPAM page retains the threshold update change
made above even though the data page was never flushed to disk.

While it would be possible to create mechanisms to ensure that SPAM pages do
not become out of synch with their corresponding data pages, the performance
impact would not be trivial. Since these errors are relatively rare and the impact
is not significant, the introduction of these errors is considered to be part of
the normal operation of the Oracle Rdb7 product. If it can be proven that the
errors are not due to the scenario above then Oracle Product Support should be
contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the
following operations:

• Recreate the database by performing:

1. SQL EXPORT

2. SQL DROP DATABASE

3. SQL IMPORT

• Recreate the database by performing:

1. RMU/BACKUP

2. SQL DROP DATABASE

6–2 Known Problems and Restrictions

3. RMU/RESTORE

• Repair the SPAM pages by using the RMU/REPAIR command. Note that
the RMU/REPAIR command does not write its changes to an after-image
journal (AIJ) file. Therefore, Oracle recommends that a full database backup
be performed immediately after using the RMU/REPAIR command.

6.0.5 Behavior Change in ’With System Logical_Name Translation’ Clause
The way logical name translation is performed when ’with system logical_name
translation’ is specified in the ’location’ clause of the ’create function’ or the ’create
routine’ statements has changed. This change occured between VAX/VMS V5.5-2
and OpenVMS V7.1.

When ’with system logical_name translation’ is specified, any logical name in the
location string is expanded using only EXECUTIVE_MODE logical names. In
VAX/VMS V5.5-2, the logical names are expanded from the SYSTEM logical name
table only. In OpenVMS V7.1, the logical names are expanded from the first
definition found when searching the logical name tables in (LNM$FILE_DEV)
order.

Thus, if a logical is only defined in the EXECUTIVE_MODE SYSTEM table (and
in no other EXECUTIVE_MODE tables), then there will be no apparent change
in behavior. However, if a logical name has been defined in the EXECUTIVE_
MODE GROUP table and in the EXECUTIVE_MODE SYSTEM table, then on
VAX/VMS V5.5 the SYSTEM table translation will be used and on OpenVMS
V7.1 the GROUP table translation will be used.

Oracle believes that this behavioral change is still in keeping with the secure
intent of this clause for external routines. An OpenVMS user must have
SYSNAM privilege to define an EXEC mode logical in any table. Therefore,
it still provides a secure method of locating production sharable images for use by
the Rdb server.

A future version of the Oracle Rdb SQL Reference manual will be reworded to
remove the reference to the SYSTEM logical name table in the description. The
keyword SECURE will be synonymous with SYSTEM in this context.

As an example, if the logical TEST_EXTRTN_1 is defined as:

$ show logical/access_mode=executive_mode test_extrtn_1
"TEST_EXTRTN_1" = "NOSUCHIMG9" (LNM$PROCESS_TABLE)
"TEST_EXTRTN_1" = "NOSUCHIMGA" (LNM$JOB_9D277AC0)
"TEST_EXTRTN_1" = "NOSUCHIMGB" (TEST$GROUP_LOGICALS)
"TEST_EXTRTN_1" = "DISK1:[TEST]EXTRTN.EXE" (LNM$SYSTEM_TABLE)

Then under VAX/VMS V5.5-2, TEST_EXTRTN_1 will be translated as
"DISK1:[TEST]EXTRTN.EXE" whereas under OpenVMS V7.1 it will be
translated as "NOSUCHIMG9".

6.0.6 Carry-Over Locks and NOWAIT Transactions Clarification
In NOWAIT transactions, the BLAST mechanism cannot be used. For the
blocking user to receive the BLAST signal, the requesting user must request the
locked resource with WAIT (which a NOWAIT transaction does not do). Oracle
Rdb defines a resource called NOWAIT, which is used to indicate that a NOWAIT
transaction has been started. When a NOWAIT transaction starts, the user
requests the NOWAIT resource. All other database users hold a lock on the
NOWAIT resource so that when the NOWAIT transaction starts, all other users
are notified with a NOWAIT BLAST. The BLAST causes blocking users to release
any carry-over locks. There can be a delay before the transactions with carry-over

Known Problems and Restrictions 6–3

locks detect the presence of the NOWAIT transaction and release their carry-over
locks. You can detect this condition by examining the stall messages. If the
"Waiting for NOWAIT signal (CW)" stall message appears frequently, then the
application is probably experiencing a decrease in performance and you should
consider disabling the carry-over lock behavior.

6.0.7 Strict Partitioning May Scan Extra Partitions
When you use a WHERE clause with the less than (<) or greater than (>)
operator and a value that is the same as the boundary value of a storage map,
Oracle Rdb7 scans extra partitions. A boundary value is a value specified in the
WITH LIMIT OF clause. The following example, executed while the logical name
RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

ATTACH ’FILENAME MF_PERSONNEL’;
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE
STORE USING (ID)
IN EMPIDS_LOW WITH LIMIT OF (200)
IN EMPIDS_MID WITH LIMIT OF (400)
OTHERWISE IN EMPIDS_OVER;
INSERT INTO T1 VALUES (150,’Boney’,’MaryJean’);
INSERT INTO T1 VALUES (350,’Morley’,’Steven’);
INSERT INTO T1 VALUES (300,’Martinez’,’Nancy’);
INSERT INTO T1 VALUES (450,’Gentile’,’Russ’);

SELECT * FROM T1 WHERE ID > 400;
Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 2 3

ID LAST_NAME FIRST_NAME
450 Gentile Russ

1 row selected

In the previous example, partition 2 does not need to be scanned. This does
not affect the correctness of the result. Users can avoid the extra scan by using
values other than the boundary values.

6.0.8 Exclusive Access Transactions May Deadlock With RCS Process
If a table is frequently accessed by long running transactions that request READ
/WRITE access reserving the table for EXCLUSIVE WRITE, and if the table has
one or more indexes, you may experience deadlocks between the user process and
the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

1. Reserve the table for SHARED WRITE.

2. Close the database and disable row cache for the duration of the exclusive
transaction.

3. Change the checkpoint interval for the RCS process to a time longer than the
time required to complete the batch job and then trigger a checkpoint just
before the batch job starts. Set the interval back to a smaller interval after
the checkpoint completes.

6–4 Known Problems and Restrictions

6.0.9 Oracle Rdb and OpenVMS ODS-5 Volumes
The OpenVMS Version 7.2 release introduced Extended File Specifications, which
consists of two major components:

• A new, optional, volume structure, ODS-5, which provides support for file
names that are longer and have a greater range of legal characters than in
previous versions of OpenVMS

• Support for deep directories

ODS-5 was introduced primarily to provide enhanced file sharing capabilities for
users of Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS for
OpenVMS), as well as DCOM and JAVA applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and
explicitly requires ODS-2 (the traditional OpenVMS volume structure) file and
directory name conventions to be followed. Because of this knowledge, Oracle
does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files,
database backup files, after image journal backup files, etc.) that utilize any
non-ODS-2 file naming features. For this reason, Oracle recommends that Oracle
Rdb database components not be located on ODS-5 volumes.

A future release of Oracle Rdb is expected to relax some of these restrictions and
support ODS-5 volumes.

6.0.10 Clarification of the USER Impersonation Provided by the Oracle Rdb
Server

Bug 551240

In Oracle Rdb V6.1, a new feature was introduced which allowed a user to
attach (or connect) to a database by providing a username (USER keyword)
and a password (USING keyword). This functionality allows the Rdb Server to
impersonate those users in two environments.

• Remote Database Access. When DECnet is used as the remote transport, the
Rdb/Dispatch layer of Oracle Rdb uses the provided username and password,
or proxy access to create a remote process which matches the named user.
However, in a remote connection over TCP/IP, the RDBSERVER process is
always logged into RDB$REMOTE rather than a specified user account. In
this case the Rdb Server impersonates the user by using the user’s UIC (user
identification code) during privilege checking. The UIC is assigned by the
OpenVMS AUTHORIZE utility.

• SQL/Services database class services. When SQL/Services (possibly accessed
by ODBC) accesses a database, it allows the user to logon to the database and
the SQL/Services server then impersonates that user in the database.

When a database has access control established using OpenVMS rights
identifiers, then access checking in these two environments does not work
as expected. For example, if a user JONES was granted the rights identifier
PAYROLL_ACCESS, then you would expect a table in the database with SELECT
access granted to PAYROLL_ACCESS to be accessible to JONES. This does not
currently work because the Rdb Server does not have the full OpenVMS security
profile loaded, just the UIC. So only access granted to JONES is allowed.

This problem results in an error being reported such as the following from ODBC:

[Oracle][ODBC][Rdb]%RDB-E-NO_PRIV privileged by database facility (#-1028)

Known Problems and Restrictions 6–5

This is currently a restriction in this release of Oracle Rdb. In the next major
release, support will be provided to inherit the users full security profile into the
database.

6.0.11 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition
Map

Bug 413410

An index which has a STORE clause with a single WITH LIMIT OF clause and
no OTHERWISE clause doesn’t validate the inserted values against the high
limit. Normally values beyond the last WITH LIMIT OF clause are rejected
during INSERT and UPDATE statements.

Consider this example:

create table PTABLE (
NR

INTEGER,
A

CHAR (2));
create index NR_IDX

on PTABLE (
NR)
type is HASHED
store using (NR)

in EMPIDS_LOW
with limit of (10);

When a value is inserted for NR that exceeds the value 10, then an error such as
"%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
NR_IDX" should be generated. However, this error is only reported if the index
has two or more partitions.

A workaround for this problem is to create a CHECK constraint on the column to
restrict the upper limit. e.g. CHECK (NR <= 10). This check constraint should
be defined as NOT DEFERRABLE and will be solved using an index lookup.

This problem will be corrected in a future version of Oracle Rdb.

6.0.12 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ...
CASCADE When Attached by PATHNAME

Bug 755182

The SQL statement DROP MODULE ... CASCADE may sometimes generate an
unexpected NO_META_UPDATE error. This occurs when the session attaches to
a database by PATHNAME.

SQL> drop module m1 cascade;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
-RDMS-E-MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle
CDD/Repository does not support CASCADE. The workaround is to attach by
FILENAME and perform the metadata operation.

In a future version of Oracle Rdb, an informational message will be issued
describing the downgrade from CASCADE to RESTRICT in such cases.

6–6 Known Problems and Restrictions

6.0.13 Unexpected DATEEQLILL Error During IMPORT With CREATE INDEX or
CREATE STORAGE MAP

Bug 1094071

When the SQL IMPORT statement includes CREATE STORAGE MAP or
CREATE INDEX statements which use TIMESTAMP or DATE ANSI literals in
the WITH LIMIT OF clause, it fails with the following error:

%SQL-F-UNSDATXPR, Unsupported date expression
-SQL-F-DATEEQLILL, Operands of date/time comparison are incorrect

The same CREATE STORAGE MAP or CREATE INDEX statements work
correctly when used outside of the IMPORT statement.

This error is generated because the SQL IMPORT statement tries to validate the
data type of the column against that of the literal value. However, during this
phase of the IMPORT, the table does not yet exist.

A workaround for this problem is to use DATE VMS literals in the WITH LIMIT
OF clause and allow the Rdb Server to perform the data type conversion at
runtime.

This restriction will be relaxed in a future version of Oracle Rdb.

6.0.14 Application and Oracle Rdb Both Using SYS$HIBER
In application processes that use Oracle Rdb and the $HIBER system service
(possibly via RTL routines such as LIB$WAIT), it is important that the
application ensures that the event being waited for has actually occurred.
Oracle Rdb uses $HIBER/$WAKE sequences for interprocess communications
particularly when the ALS (AIJ Log Server) or the Row Cache features are
enabled.

Oracle Rdb’s use of the $WAKE system service can interfere with other users of
$HIBER (such as the routine LIB$WAIT) that do not check for event completion,
possibly causing a $HIBER to be unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence
that avoids continuing without a check for the operation (such as a delay or a
timer firing) being complete.

The following pseudo-code shows one example of how a flag can be used to
indicate that a timed-wait has completed correctly. The wait does not complete
until the timer has actually fired and set TIMER_FLAG to TRUE. This code
relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
BEGIN
! Clear the timer flag
TIMER_FLAG = FALSE

! Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

! Hibernate. When the $HIBER completes, check to make
! sure that TIMER_FLAG is set indicating that the wait
! has finished.
WHILE TIMER_FLAG = FALSE
DO SYS$HIBER()
END

Known Problems and Restrictions 6–7

ROUTINE TIMER_AST:
BEGIN
! Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE

! Wake the main-line code
STAT = SYS$WAKE ()
IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
END

Starting with OpenVMS V7.1, the LIB$WAIT routine has been enhanced via
the FLAGS argument (with the LIB$K_NOWAKE flag set) to allow an alternate
wait scheme (using the $SYNCH system service) that can avoid potential
problems with multiple code sequences using the $HIBER system service. See
the OpenVMS RTL Library (LIB$) Manual for more information about the
LIB$WAIT routine.

6.0.15 IMPORT Unable to Import Some View Definitions
Bug 520651

View definitions that reference SQL functions, that is functions defined by
the CREATE MODULE statement, cannot currently be imported by the SQL
IMPORT statement. This is because the views are defined before the functions
themselves exist.

The following example shows the errors from IMPORT.

IMPORTing view TVIEW
%SQL-F-NOVIERES, unable to import view TVIEW
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist
-RDMS-E-RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist
-RDMS-F-TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem.

create database filename badimp;
create table t (sex char);

create module TFORMAT
language SQL

function FORMAT_OUT (:s char)
returns char(4);
return (case :s

when ’F’ then ’Female’
when ’M’ then ’Male’
else NULL
end);

end module;

create view TVIEW (m_f) as
select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the
workaround is to save the view definitions and reapply them after the IMPORT
completes.

6–8 Known Problems and Restrictions

This restriction does not apply to external functions, created using the CREATE
FUNCTION statement, as these database objects are defined before tables and
views.

6.0.16 AIJSERVER Privileges
For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created
with only NETMBX and TMPMBX privileges. These privileges are sufficient to
start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate
to ensure continued replication in all environments and workload situations.
Therefore, Oracle recommends that the DBA provide the following additional
privileges for the AIJSERVER account:

• ALTPRI

This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

• PSWAPM

This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

• SETPRV

This privilege allows the AIJSERVER to temporarily set any additional
privileges it may need to access the standby database or its server processes.

• SYSPRV

This privilege allows the AIJSERVER to access the standby database rootfile,
if necessary.

• WORLD

This privilege allows the AIJSERVER to more accurately detect standby
database server process failure and handle network failure more reliably.

6.0.17 Lock Remastering and Hot Standby
When using the Hot Standby feature, Oracle recommends that the VMS
distributed lock manager resource tree be mastered on the standby node where
Hot Standby is started. This can be using any of the following methods:

• Disable dynamic lock remastering. This can be done dynamically by setting
the SYSGEN parameter PE1 to the value 1.

When using this option, be sure that Hot Standby is started on the node
where the standby database is first opened.

• Increasing the LOCKDIRWT value for the LRS node higher than any other
node in the same cluster. However, this is not a dynamic SYSGEN parameter,
and a node re-boot is required.

Failure to prevent dynamic lock remastering may cause severe performance
degradation for the standby database, which ultimately may be reflected by
decreased master database transaction throughput.

Known Problems and Restrictions 6–9

6.0.18 RDB_SETUP Privilege Error
Rdb Web Agent V3.0 exposes a privilege problem with Rdb V7.0 and later. This
will be fixed in the next Rdb7 release.

The RDB_SETUP function fails with %RDB-E-NO_PRIV, privilege denied by
database facility.

It appears that the only workaround is to give users DBADM privilege. Oracle
Corporation does not recommend giving users the DBADM privilege.

6.0.19 Starting Hot Standby on Restored Standby Database May Corrupt
Database

If a standby database is modified outside of Hot Standby, then backed up and
restored, Hot Standby will appear to start up successfully but will corrupt the
standby database. A subsequent query of the database will return unpredictable
results, possibly in a bugcheck in DIOFETCH$FETCH_ONE_LINE. When the
standby database is restored from a backup of itself, the database is marked as
unmodified. Therefore, Hot Standby cannot tell whether the database had been
modified before the backup was taken.

WORKAROUND: None.

6.0.20 Restriction on Compound Statement Nesting Levels
The use of multiple nesting levels of compound statements such as CASE or IF-
THEN-ELSE within multistatement procedures can result in excessive memory
usage during the compile of the procedure. Virtual memory problems have been
reported with 10 or 11 levels of nesting. The following example shows an outline
of the type of nesting that can lead to this problem.

CREATE MODULE MY_MOD LANGUAGE SQL
PROCEDURE MY PROCEDURE

(PARAMETERS);

BEGIN
DECLARE;

SET :VARS = 0;

6–10 Known Problems and Restrictions

SELECT;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #1

WHEN 100 THEN SET ...;
WHEN -811 THEN SET ...;
WHEN 0 THEN
SET ...; SELECT ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #2

WHEN 0 THEN SET ...;
WHEN -811 THEN SET ...;
WHEN 100 THEN

UPDATE...; SET ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #1
ELSE
IF :FLAG < 0 THEN SET...; ! #2

ELSE
DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET...; ! #3

SET ...;
ELSE
IF :FLAG < 0 THEN SET...; ! #4
ELSE
IF IN_CHAR_PARAM = ’S’ THEN ! #5
UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #6
ELSE
IF :FLAG < 0 THEN SET...; ! #7
END IF; ! #7

END IF; ! #6
END IF; ! #5

IF :FLAG = 0 THEN ! #5
UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #6
ELSE

IF :FLAG < 0 THEN SET ...; ! #7
ELSE

DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE:
IF :FLAG= 100 THEN SET ...; ! #8
ELSE

IF :FLAG < 0 THEN SET ...; ! #9
ELSE

DELETE ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #10

SET ...;
ELSE

IF :FLAG < 0 THEN SET ...; ! #11
END IF; (11 end if’s for #11 - #1)

ELSE SET ...;
END CASE; ! Case #2

ELSE SET ...;
END CASE; ! Case #1

END;
END MODULE;

Known Problems and Restrictions 6–11

Workaround: Reduce the complexity of the multistatement procedure. Use fewer
levels of compound statement nesting by breaking the multistatement procedure
into smaller procedures or by using the CALL statement to execute nested stored
procedures.

6.0.21 Back Up All AIJ Journals Before Performing a Hot Standby Switchover
Operation

Prior to performing a proper Hot Standby switchover operation from the old
master database to the new master database (old standby database), be sure to
back up ALL AIJ journals.

If you do not back up the AIJ journals on the old master database prior to
switchover, they will be initialized by the Hot Standby startup operation, and you
will not have a backup of those AIJ journals.

Failure to back up these journals may place your new master database at risk of
not being able to be recovered, requiring another fail-over in the event of system
failure.

6.0.22 Concurrent DDL and Read-Only Transaction on the Same Table Not
Compatible

It is possible that a read-only transaction could generate a bugcheck at
DIOBND$FETCH_AIP_ENT + 1C4 if there is an active, uncommitted transaction
that is making metadata changes to the same table. Analysis shows that the
snapshot transaction is picking up stale metadata information. Depending
on what metatdata modifications are taking place, it is possible for metadata
information to be removed from the system tables but still exist in the snapshot
file. When the read-only transaction tries to use that information, it no longer
exists and causes a bugcheck.

The following example shows the actions of the two transactions:

A: B:
attach
set transaction read write

attach
set transaction read only

drop index emp_last_name
select * from employees
...bugcheck...

The only workaround is to avoid running the two transactions together.

6.0.23 Oracle Rdb and the SRM_CHECK Tool
The Alpha Architecture Reference Manual, Third Edition (AARM) describes
strict rules for using interlocked memory instructions. The Compaq Alpha 21264
(EV6) processor and all future Alpha processors are more stringent than their
predecessors in their requirement that these rules be followed. As a result, code
that has worked in the past despite noncompliance may now fail when executed
on systems featuring the new 21264 processor.

Oracle Rdb Release 7.0.3 supports the Compaq Alpha 21264 (EV6) processor.
Oracle has performed extensive testing and analysis of the Rdb code to ensure
that it is compliant with the rules for using interlocked memory instructions.

6–12 Known Problems and Restrictions

However, customers using the Compaq supplied SRM_CHECK tool may find
that several of the Oracle Rdb images cause the tool to report potential alpha
architecture violations. Although SRM_CHECK can normally identify a code
section in an image by the section’s attributes, it is possible for OpenVMS images
to contain data sections with those same attributes. As a result, SRM_CHECK
may scan data as if it were code, and occasionally, a block of data may look like
a noncompliant code sequence. This is the case with the Oracle Rdb supplied
images. There is no actual instruction stream violation.

However, customers must use the SRM_CHECK tool on their own application
executable image files. It is possible that applications linked with very old version
of Oracle Rdb (versions prior to Oracle Rdb Release 6.0-05) could have included
illegal interlocked memory instruction sequences produced by very old versions of
compilers. This code was included in the Oracle Rdb object library files for some
very old versions of Oracle Rdb.

If errant instruction sequences are detected in the objects supplied by the
Oracle Rdb object libraries, the correct action is to relink the application with a
more-current version of Oracle Rdb.

Additional information about the Compaq Alpha 21264 (EV6) processor
interlocked memory instructions issues is available at:

http://www.openvms.digital.com/openvms/21264_considerations.html

6.0.24 Oracle RMU Checksum_Verification Qualifier
The Oracle Rdb RMU BACKUP database backup command includes a Checksum_
Verification qualifier.

Specifying Checksum_Verification requests that the RMU Backup command
verify the checksum stored on each database page before it is backed up, thereby
providing end-to-end error detection on the database I/O.

The Checksum_Verification qualifier uses additional CPU resources but can
provide an extra measure of confidence in the quality of the data backed up. Use
of the Checksum_Verification qualifier offers an additional level of data security
and use of the Checksum_Verification qualifier permits Oracle RMU to detect the
possibility that the data it is reading from these disks has only been partially
updated.

Note, however, that if you specify the Nochecksum_Verification qualifier, and
undetected corruptions exist in your database, the corruptions are included in
your backup file and restored when you restore the backup file. Such a corruption
might be difficult to recover from, especially if it is not detected until weeks or
months after the restore operation is performed.

Oracle Corporation recommends that you use the Checksum_Verification qualifier
with all database backup operations because of the improved data integrity this
qualifier provides.

Unfortunately, due to an oversight, for versions of Oracle Rdb prior to Version
8.0, the default for online backups is the Nochecksum_Verification qualifier.
When you do not specify the Checksum_Verification qualifie on all of your RMU
database backup commands.

Known Problems and Restrictions 6–13

6.0.25 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL
(Alpha)

OpenVMS Alpha V7.1 introduced the high-performance Sort/Merge utility (also
known as HYPERSORT). This utility takes advantage of the Alpha architecture
to provide better performance for most sort and merge operations.

The high-performance Sort/Merge utility supports a subset of the SOR routines.
Unfortunately, the high-performance Sort/Merge utility does not support several
of the interfaces used by the RMU/OPTIMIZE/AFTER_JOURNAL command. In
addition, the high-performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU/OPTIMIZE
/AFTER_JOURNAL command.

For this reason, the use of the high-performance Sort/Merge utility is not
supported for the RMU/OPTIMIZE/AFTER_JOURNAL command. Do not define
the logical name SORTSHR to reference HYPERSORT.EXE.

6.0.26 Restriction on Using /NOONLINE with Hot Standby
When a user process is performing a read-only transaction on a standby database,
an attempt to start replication on the standby database with the /NOONLINE
qualifier will fail with the following error, and the database will be closed
clusterwide:

%RDMS-F-OPERCLOSE, database operator requested database shutdown

In a previous release, the following error was returned and the process doing the
read-only transaction was not affected:

%RDMS-F-STBYDBINUSE, standby database cannot be exclusively accessed for
replication

As a workaround, if exclusive access is necessary to the standby database,
terminate any user processes before starting replication with the /NOONLINE
qualifier.

This restriction is due to another bug fix and will be lifted in a future release of
Oracle Rdb.

6.0.27 SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error

Bug 683916

A bugcheck could occur when a ranked B-tree index is used in a query after
a database has been upgraded to Release 7.0.1.3. This is a result of index
corruption that was introduced in previous versions of Oracle Rdb7. This
corruption has been fixed and indexes created using Release 7.0.1.3 will not be
impacted.

As a workaround, delete the affected index and re-create it under Oracle Rdb7
Release 7.0.1.3 or later.

6.0.28 DBAPack for Windows 3.1 is Deprecated
Oracle Enterprise Manager DBAPack will no longer be supported for use on
Windows 3.1.

6–14 Known Problems and Restrictions

6.0.29 Determining Mode for SQL Non-Stored Procedures
Bug 506464.

Although stored procedures allow parameters to be defined with the modes IN,
OUT, and INOUT, there is no similar mechanism provided for SQL module
language or SQL precompiled procedures. However, SQL still associates a mode
with a parameter using the following rules:

Any parameter which is the target of an assignment is considered an OUT
parameter. Assignments consist of the following:

• The parameter is assigned a value with the SET or GET DIAGNOSTICS
statement. For example:

set :p1 = 0;
get diagnostics :p2 = TRANSACTION_ACTIVE;

• The parameter is assigned a value with the INTO clause of an INSERT,
UPDATE, or SELECT statement. For example:

insert into T (col1, col2)
values (...)
returning dbkey into :p1;

update accounts
set account_balance = account_balance + :amount
where account_number = :p1
returning account_balance
into :current_balance;

select last_name
into :p1
from employees
where employee_id = ’00164’;

• The parameter is passed on a CALL statement as an OUT or INOUT
argument. For example:

begin
call GET_CURRENT_BALANCE (:p1);
end;

Any parameter that is the source for a query is considered an IN parameter.
Query references include:

• The parameter appears in the SELECT list, WHERE or HAVING clauses of a
SELECT, or DELETE statement. For example:

select :p1 || last_name, count(*)
from T
where last_name like ’Smith%’
group by last_name
having count(*) > :p2;

delete from T
where posting_date < :p1;

• The parameter appears on the right side of the assignment in a SET
statement or SET clause of an UPDATE statement. For example:

set :p1 = (select avg(salary)
from T
where department = :p2);

update T
set col1 = :p1
where ...;

Known Problems and Restrictions 6–15

• The parameter is used to provide a value to a column in an INSERT
statement. For example:

insert into T (col1, col2)
values (:p1, :p2);

• The parameter is referenced by an expression in a TRACE, CASE, IF/ELSEIF,
WHILE statement, or by the DEFAULT clause of a variable declaration. For
example:

begin
declare :v integer default :p1;
DO_LOOP:
while :p2 > :p1
loop

if :p1 is null then
leave DO_LOOP;

end if;
set :p2 = :p2 + 1;
...;
trace ’Loop at ’, :p2;

end loop;
end;

• The parameter is passed on a CALL statement as an INOUT or IN argument.
For example:

begin
call SET_LINE_SPEED (:p1);
end;

SQL only copies values from the client (application parameters) to the procedure
running in the database server if it is marked as either an IN or INOUT
parameter. SQL only returns values from the server to the client application
parameter variables if the parameter is an OUT or INOUT parameter.

If a parameter is considered an OUT only parameter, then it must be assigned
a value within the procedure, otherwise the result returned to the application
is considered undefined. This could occur if the parameter is used within a
conditional statement such as CASE or IF/ELSEIF. In the following example, the
value returned by :p2 would be undefined if :p1 were negative or zero:

begin
if :p1 > 0 then

set :p2 = (select count(*)
from T
where col1 = :p1);

end if;
end;

It is the responsibility of the application programmer to ensure that the
parameter is correctly assigned values within the procedure. A workaround is to
either explicitly initialize the OUT parameter, or make it an INOUT parameter.
For example:

6–16 Known Problems and Restrictions

begin
if :p1 > 0 then

set :p2 = (select count(*)
from T
where col1 = :p1);

elseif :p2 is null then
begin
end;

end if;
end;

The empty statement will include a reference to the parameter to make it an IN
parameter as well as an OUT parameter.

6.0.30 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE Error
An error could result when a DROP TABLE CASCADE statement is issued. This
occurs when the following conditions apply:

• A table is created with an index defined on the table.

• A storage map is created with a placement via index.

• The storage map is a vertical record partition storage map with two or more
STORE COLUMNS clauses.

The error message given is %RDB-E-NO_META_UPDATE, metadata update
failed.

The following example shows a table, index, and storage map definition followed
by a DROP TABLE CASCADE statement and the resulting error message:

SQL> CREATE TABLE VRP_TABLE (ID INT, ID2 INT);
SQL> COMMIT;
SQL> CREATE UNIQUE INDEX VRP_IDX ON VRP_TABLE (ID)
SQL> STORE IN EMPIDS_LOW;
SQL> COMMIT;
SQL> CREATE STORAGE MAP VRP_MAP
cont> FOR VRP_TABLE
cont> PLACEMENT VIA INDEX VRP_IDX
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (ID)
cont> IN EMPIDS_LOW
cont> STORE COLUMNS (ID2)
cont> IN EMPIDS_MID;
SQL> COMMIT;
SQL>
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> -- Index VRP_IDX is also being dropped.
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-WISH_LIST, feature not implemented yet
-RDMS-E-VRPINVALID, invalid operation for storage map "VRP_MAP"

The workaround to this problem is to first delete the storage map, and then
delete the table using the CASCADE option. The following example shows the
workaround. The SHOW statement indicates that the table, index, and storage
map were deleted:

Known Problems and Restrictions 6–17

SQL> DROP STORAGE MAP VRP_MAP;
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> -- Index VRP_IDX is also being dropped.
SQL> COMMIT;
SQL> SHOW TABLE VRP_TABLE
No tables found
SQL> SHOW INDEX VRP_IDX
No indexes found
SQL> SHOW STORAGE MAP VRP_MAP
No Storage Maps Found

This problem will be corrected in a future version of Oracle Rdb.

6.0.31 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
In certain situations, Oracle Rdb bugcheck dump files will indicate an exception
at COSI_CHF_SIGNAL. This location is, however, not the address of the actual
exception. The actual exception occurred at the previous call frame on the stack
(the one listed as the next "Saved PC" after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","-F-","-E-"

***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI-F-BUGCHECK, internal consistency failure
Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0

.

.

.

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset
00000318. If you have a bugcheck dump with an exception at COSI_CHF_
SIGNAL, it is important to note the next ‘‘Saved PC’’ because it will be needed
when working with Oracle Rdb Support Services.

6.0.32 Interruptions Possible when Using Multistatement or Stored Procedures
Long running multistatement or stored procedures can cause other users in the
database to be interrupted by holding resources needed by those other users.
Some resources obtained by the execution of a multistatement or stored procedure
will not be released until the multistatement or stored procedure finishes.
This problem can be encountered even if the statement contains COMMIT or
ROLLBACK statements.

The following example demonstrates the problem. The first session enters an
endless loop; the second session attempts to backup the database, but it is
permanently interrupted:

Session 1

6–18 Known Problems and Restrictions

SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> CREATE FUNCTION LIB$WAIT (IN REAL BY REFERENCE)
cont> RETURNS INT;
cont> EXTERNAL NAME LIB$WAIT
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> COMMIT;
SQL> EXIT;

$ SQL
SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> BEGIN
cont> DECLARE :LAST_NAME LAST_NAME_DOM;
cont> DECLARE :WAIT_STATUS INTEGER;
cont> LOOP
cont> SELECT LAST_NAME INTO :LAST_NAME
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
cont> ROLLBACK;
cont> SET :WAIT_STATUS = LIB$WAIT (5.0);
cont> SET TRANSACTION READ ONLY;
cont> END LOOP;
cont> END;

Session 2

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session we can see that the backup process is waiting for a lock held
in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
==
SHOW LOCKS/BLOCKING Information
==

--
Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 20204383 RMU BACKUP..... 5600A476 00010001 CW NL
Blocker: 2020437B SQL............ 3B00A35C 00010001 PR PR
$

There is no workaround for this restriction. When the multistatement or stored
procedure finishes execution, the resources needed by other processes will be
released.

6.0.33 Row Cache Not Allowed on Standby Database While Hot Standby
Replication Is Active

The row cache feature may not be active on a Hot Standby database while
replication is taking place. The Hot Standby feature will not start if row cache is
active on the standby database.

This restriction exists because rows in the row cache are accessed using logical
dbkeys. However, information transferred to the Hot Standby database from the
after-image journal facility only contains physical dbkeys. Because there is no
way to maintain rows in the cache using the Hot Standby processing, the row
cache must be disabled on the standby database when the standby database is
open and replication is active. The master database is not affected; the row cache
feature and the Hot Standby feature may be used together on a master database.

Known Problems and Restrictions 6–19

The row cache feature should be identically configured on the master and standby
databases in the event failover occurs, but the row cache feature must not be
activated on the standby database until it becomes the master.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the
RMU/OPEN command to disable the row cache feature on the standby database.
To open the Hot Standby database prior to starting replication, use the ROW_
CACHE=DISABLED qualifier on the RMU/OPEN command.

6.0.34 Hot Standby Replication Waits when Starting if Read-Only Transactions
Running

Hot Standby replication will wait to start if there are read-only (snapshot)
transactions running on the standby database. The log roll-forward server (LRS)
will wait until the read-only transactions commit, and then replication will
continue.

This is an existing restriction of the Hot Standby software. This release note is
intended to complement the Hot Standby documentation.

6.0.35 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle
Functions Script

If your programming environment is not set up correctly, you may encounter
problems running the SYS$LIBRARY:SQL_FUNCTIONS70.SQL script used to
set up the Oracle7 functions being supplied with Oracle Rdb.

The following example shows the error:

%RDB-E-EXTFUN_FAIL, external routine failed to compile or execute successfully
-RDMS-E-INVRTNUSE, routine RDB$ORACLE_SQLFUNC_INTRO can not be used, image
"SQL$FUNCTIONS" not activated
-RDMS-I-TEXT, Error activating image
DISK:[DIR]SQL$FUNCTIONS.;, File not found

To resolve this problem, use the @SYS$LIBRARY:RDB$SETVER to set up the
appropriate logical names. This will be necessary for programs that use the
functions as well.

In a standard environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER S

In a multiversion environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER 70

6.0.36 DEC C and Use of the /STANDARD Switch
Bug 394451

The SQL$PRE compiler examines the system to know which dialect of C to
generate. That default can be overwritten by using the /CC=[DECC/VAXC]
switch. The /STANDARD switch should not be used to choose the dialect of C.

Support for DEC C was added to the product with V6.0 and this note is
meant to clarify that support, not to indicate a change. It is possible to use
/STANDARD=RELAXED_ANSI89 or /STANDARD=VAXC correctly, but this is not
recommended.

6–20 Known Problems and Restrictions

The following example shows both the right and wrong way to compile an Oracle
Rdb SQL program. Assume a symbol SQL$PRE has been defined, and DEC C is
the default C compiler on the system:

$ SQL$PRE/CC ! This is correct.
$ SQL$PRE/CC=DECC ! This is correct.
$ SQL$PRE/CC=VAXC ! This is correct.

$ SQL$PRE/CC/STANDARD=VAXC ! This is incorrect.

Notice that the /STANDARD switch has other options in addition to
RELAXED_ANSI89 and VAX C. Those are also not supported.

6.0.37 Excessive Process Page Faults and Other Performance Considerations
During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process
performance. Sometimes this page faulting occurs during Oracle Rdb sort
operations. This note describes how page faulting can occur and some ways to
help control, or at least understand, it.

One factor contributing to Oracle Rdb process page faulting is sorting operations.
Common causes of sorts include the SQL GROUP BY, ORDER BY, UNION, and
DISTINCT clauses specified for query and index creation operations. Defining the
logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle
Rdb sort operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the
Oracle Rdb images and does not generally call the routines in the OpenVMS
run-time library. A copy of the SORT32 code is used to provide stability between
versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort
routines from executive processor mode which is difficult to do using the SORT32
sharable image. Database import and RMU load operations call the OpenVMS
sort run-time library.

At the beginning of a sort operation, the sort code allocates some memory for
working space. The sort code uses this space for buffers, in-memory copies of the
data, and sorting trees.

Sort code does not directly consider the process quotas or parameters when
allocating memory. The effects of WSQUOTA and WSEXTENT are indirect. At
the beginning of each sort operation, the sort code attempts to adjust the process’
working set to the maximum possible size using the $ADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum
possible). Sort code then uses a value of 75% of the returned working set for
virtual memory scratch space. The scratch space is then initialized and the sort
begins.

The initialization of the scratch space generally causes page faults to access
the pages newly added to the working set. Pages that were in the working set
already may be faulted out as new pages are faulted in. Once the sort operation
completes, the pages that may have been faulted out of the working set are likely
to be faulted back into the working set.

When a process’ working set is limited by the working set quota (WSQUOTA)
parameter and the working set extent (WSEXTENT) parameter is a much larger
value, the first call to the sort routines can cause many page faults as the working
set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help
reduce the impact of this case.

Known Problems and Restrictions 6–21

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_
MWSEXTENT equal to the WSMAX parameter. This means that all processes
on the system end up with WSEXTENT the same as WSMAX. Because WSMAX
might be quite high, sorting might result in excessive page faulting. You may
want to explicitly set PQL_MWSEXTENT to a lower value if this is the case on
your system.

Sort work files are another factor to consider when tuning Oracle Rdb sort
operations. When the operation cannot be done in available memory, sort code
will use temporary disk files to hold the data as it is being sorted. The Oracle
Rdb Guide to Performance and Tuning contains more detailed information about
sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work
files sort code is to use if work files are required. The default is 2, and the
maximum number is 10. The work files can be individually controlled by the
SORTWORKn logical names (where n is from 0 through 9). You can increase the
efficiency of sort operations by assigning the location of the temporary sort work
files to different disks. These assignments are made by using up to 10 logical
names, SORTWORK0 through SORTWORK9.

Normally, sort code places work files in the user’s SYS$SCRATCH directory. By
default, SYS$SCRATCH is the same device and directory as the SYS$LOGIN
location. Spreading the I/O load over many disks improves efficiency as well as
performance by taking advantage of the system resources and helps prevent disk
I/O bottlenecks. Specifying that a user’s work files will reside on separate disks
permits overlap of the sort read/write cycle. You may also encounter cases where
insufficient space exists on the SYS$SCRATCH disk device, such as when Oracle
Rdb builds indexes for a very large table. Using the SORTWORK0 through
SORTWORK9 logical names can help you avoid this problem.

Note that sort code uses the work files for different sorted runs, and then merges
the sorted runs into larger groups. If the source data is mostly sorted, then
not every sort work file may need to be accessed. This is a possible source
of confusion because even with 10 sort work files, it is possible to exceed the
capacity of the first sort file, and the sort operation will fail never having accessed
the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_
WORK_FILE do not affect or control the operation of sort. These logical names
are used to control other temporary space allocations within Oracle Rdb.

6.0.38 Performance Monitor Column Mislabeled
The File IO Overview statistics screen, in the Rdb Performance Monitor, contains
a column labeled Pages Checked. The column should be labeled Pages Discarded
to correctly reflect the statistic displayed.

6.0.39 Restriction Using Backup Files Created Later than Oracle Rdb7
Release 7.0.1

Bug 521583

Backup files created using Oracle Rdb7 releases later than 7.0.1 cannot be
restored using Oracle Rdb7 Release 7.0.1. To fix a problem in a previous release,
some internal backup file data structures were changed. These changes are not
backward compatible with Oracle Rdb7 Release 7.0.1.

6–22 Known Problems and Restrictions

If you restore the database using such a backup file, then any attempt to access
the restored database may result in unpredictable behavior, even though a verify
operation may indicate no problems.

There is no workaround to this problem. For this reason, Oracle Corporation
strongly recommends performing a full and complete backup both before and
after the upgrade from Release 7.0.1 to later releases of Oracle Rdb7.

6.0.40 RMU Backup Operations and Tape Drive Types
When using more than one tape drive for an RMU backup operation, all the tape
drives must be of the same type. For example, all the tape drives must be either
TA90s or TZ87s or TK50s. Using different tape drive types (one TK50 and one
TA90) for a single database backup operation may make database restoration
difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a
backup operation, but is not able to detect all invalid cases and expects that all
tape drives for a backup are of the same type.

As long as all the tapes used during a backup operation can be read by the same
type of tape drive during a restore operation, the backup is likely to be valid.
This may be the case, for example, when using a TA90 and a TA90E.

Oracle recommends that, on a regular basis, you test your backup and recovery
procedures and environment using a test system. You should restore the
databases and then recover them using AIJs to simulate failure recovery of
the production system.

Consult the Oracle Rdb Guide to Database Maintenance, the Oracle Rdb Guide
to Database Design and Definition, and the Oracle RMU Reference Manual for
additional information about Oracle Rdb backup and restore operations.

6.0.41 Use of Oracle Rdb from Shared Images
Bug 470946

If code in the image initialization routine of a shared image makes any calls
into Oracle Rdb, through SQL or any other means, access violations or other
unexpected behavior may occur if Oracle Rdb’s images have not had a chance to
do their own initialization.

To avoid this problem, applications must do one of the following:

• Do not make Oracle Rdb calls from the initialization routines of shared
images.

• Link in such a way that the RDBSHR.EXE image initializes first. This can
be done by placing the reference to RDBSHR.EXE and any other Oracle Rdb
shared images last in the linker options file.

6.0.42 Restriction Added for CREATE STORAGE MAP on Table with Data
Oracle Rdb7 added support that allows a storage map to be added to an existing
table which contains data. The restrictions listed for Oracle Rdb7 were:

• The storage map must be a simple map that references only the default
storage area and represents the current (default) mapping for the table. The
default storage area is either RDB$SYSTEM or the area name provided by
the CREATE DATABASE...DEFAULT STORAGE AREA clause.

Known Problems and Restrictions 6–23

• The new map cannot change THRESHOLDS or COMPRESSION for the table,
nor can it use the PLACEMENT VIA INDEX clause. It can only contain one
area and cannot be vertically partitioned. This new map simply describes the
mapping as it exists by default for the table.

This release of Rdb7 adds the additional restriction that the storage map may not
include a WITH LIMIT clause for the storage area. The following example shows
the reported error:

SQL> CREATE TABLE MAP_TEST1 (A INTEGER, B CHAR(10));
SQL> CREATE INDEX MAP_TEST1_INDEX ON MAP_TEST1 (A);
SQL> INSERT INTO MAP_TEST1 (A, B) VALUES (3, ’Third’);
1 row inserted
SQL> CREATE STORAGE MAP MAP_TEST1_MAP FOR MAP_TEST1
cont> STORE USING (A) IN RDB$SYSTEM
cont> WITH LIMIT OF (10); -- can’t use WITH LIMIT clause
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST1" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table

6.0.43 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error
Bug 456867

If a domain has a DEFAULT of CURRENT_USER, SESSION_USER, or
SYSTEM_USER and attempts to delete that default, it may fail unexpectedly.
The following example shows the error:

SQL> ATTACH ’FILENAME PERSONNEL’;
SQL> CREATE DOMAIN ADDRESS_DATA2_DOM CHAR(31)
cont> DEFAULT CURRENT_USER;
SQL> COMMIT;
SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> DROP DEFAULT;
%SQL-F-DEFVALUNS, Default values are not supported for the data type of
ADDRESS_DATA2_DOM

To work around this problem you must first alter the domain to have a default of
NULL, as shown, and then use DROP DEFAULT:

SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> SET DEFAULT NULL;
SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> DROP DEFAULT;
SQL> COMMIT;

This problem will be corrected in a future release of Oracle Rdb.

6.0.44 Oracle Rdb7 Workload Collection Can Stop Hot Standby Replication
If you are replicating your Oracle Rdb7 database using the Oracle Hot Standby
option, you must not use the workload collection option. By default, workload
collection is disabled. However, if you enabled workload collection, you must
disable it on the master database prior to performing a backup operation on that
master database if it will be used to create the standby database for replication
purposes. If you do not disable workload collection, it could write workload
information to the standby database and prevent replication operations from
occurring.

The workaround included at the end of this section describes how to disable
workload collection on the master database and allow the Hot Standby software
to propagate the change to the standby database automatically during replication
operations.

6–24 Known Problems and Restrictions

Background Information
By default, workload collection and cardinality collection are automatically
disabled when Hot Standby replication operations are occurring on the standby
database. However, if replication stops (even for a brief network failure), Oracle
Rdb7 potentially can start a read/write transaction on the standby database to
write workload collection information. Then, because the standby database is
no longer synchronized transactionally with the master database, replication
operations cannot restart.

Note

The Oracle Rdb7 optimizer can update workload collection information in
the RDB$WORKLOAD system table even though the standby database
is opened exclusively for read-only queries. A read/write transaction is
started during the disconnection from the standby database to flush the
workload and cardinality statistics to the system tables.

If the standby database is modified, you receive the following messages when you
try to restart Hot Standby replication operations:

%RDMS-F-DBMODIFIED, database has been modified; AIJ roll-forward not possible
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround
To work around this problem, perform the following:

• On the master database, disable workload collection using the SQL clause
WORKLOAD COLLECTION IS DISABLED on the ALTER DATABASE
statement. For example:

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

This change is propagated to the standby database automatically when you
restore the standby database and restart replication operations. Note that,
by default, the workload collection feature is disabled. You need to disable
workload collection only if you previously enabled workload collection with
the WORKLOAD COLLECTION IS ENABLED clause.

• On the standby database, include the Transaction_Mode qualifier on the
RMU/Restore command when you restore the standby database. You should
set this qualifier to read-only to prevent modifications to the standby database
when replication operations are not active. The following example shows the
Transaction_Mode qualifier used in a typical RMU/Restore command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
/NOCDD
/NOLOG
/ROOT=DISK1:[DIR]standby_personnel.rdb
/AIJ_OPT=aij_opt.dat
DISK1:[DIR]standby_personnel.rbf

If, in the future, you fail over processing to the standby database (so that the
standby database becomes the master database), you can re-enable updates to
the ‘‘new’’ master database. For example, to re-enable updates, use the SQL
statement ALTER DATABASE and include the SET TRANSACTION MODES
(ALL) clause. The following example shows this statement used on the new
master database:

Known Problems and Restrictions 6–25

SQL> ALTER DATABASE FILE mf_personnel
cont> SET TRANSACTION MODES (ALL);

6.0.45 RMU Convert Command and System Tables
When the RMU Convert command converts a database from a previous version
to Oracle Rdb V7.0 or higher, it sets the RDB$CREATED and RDB$LAST_
ALTERED columns to the timestamp of the convert operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is
space filled) of the converter. Here xxx represents the object name, such as in
RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_
RELATIONS if the database is transfer enabled.

6.0.46 Converting Single-File Databases
Because of a substantial increase in the database root file information for Release
7.0, you should ensure that you have adequate disk space before you use the
RMU Convert command with single-file databases and Release 7.0 or higher.

The size of the database root file of any given database will increase a minimum
of 13 blocks and a maximum of 597 blocks. The actual increase depends mostly
on the maximum number of users specified for the database.

6.0.47 Restriction when Adding Storage Areas with Users Attached to
Database

If you try to interactively add a new storage area where the page size is smaller
than the smallest existing page size and the database has been manually opened
or users are active, the add operation fails with the following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and,
if the database is set to OPEN IS MANUAL, the database is closed. Several
internal Oracle Rdb data structures are based on the minimum page size, and
these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ file, any
recovery scenario will fail. Note also that if you use .aij files, you must backup
the database and restart after-image journaling because this change invalidates
the current AIJ recovery.

6.0.48 Restriction on Tape Usage for Digital UNIX V3.2

6.0.49 Support for Single-File Databases to be Dropped in a Future Release
Oracle Rdb currently supports both single-file and multifile databases on
OpenVMS. However, single-file databases will not be supported in a future
release of Oracle Rdb. At that time, Oracle Rdb will provide the means to easily
convert single-file databases to multifile databases.

Oracle recommends that users with single-file databases perform the following
actions:

• Use the Oracle RMU commands, such as Backup and Restore, to make
copies, back up, or move single-file databases. Do not use operating system
commands to copy, back up, or move databases.

6–26 Known Problems and Restrictions

• Create new databases as multifile databases even though single-file databases
are supported in Oracle Rdb release 6.1 and release 7.0.

6.0.50 DECdtm Log Stalls
Resource managers using the DECdtm services can sometimes suddenly stop
being able to commit transactions. If Oracle Rdb7 is installed and transactions
are being run, an RMU Show command on the affected database will show
transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on
symptoms, fixes, and workarounds for this problem. One workaround, for
OpenVMS V5.5-x, is provided here.

On the affected node while the log stall is in progress, type the following
command from a privileged account:

$ MCR LMCP SET NOTIMEZONE

This should force the log to restart.

This stall occurs only when a particular bit in a pointer field becomes set. To
see the value of the pointer field, enter the following command from a privileged
account (where <nodename> is the SCS node name of the node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>

This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 29551FC0-CBB7-11CC-8001-AA000400B7A5
Penultimate Checkpoint: 000013FD4479 0079
Last Checkpoint: 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this
excerpt from the previous example shows:

Last Checkpoint: 000013FDFC84 0084
^
|

When the number indicated in the example becomes 8, the log will stall. Check
this number and observe how quickly it grows. When it is at 7FFF, frequently
use the following command:

$ MCR LMCP SHOW LOG /CURRENT

If this command shows a stall in progress, use the workaround to restart the log.

See your Compaq Computer Corporation representative for information about
patches to DECdtm.

6.0.51 Cannot Run Distributed Transactions on Systems with DECnet/OSI and
OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version
6.1 or OpenVMS VAX Version 6.0, you cannot run Oracle Rdb7 operations
that require the two-phase commit protocol. The two-phase commit protocol
guarantees that if one operation in a distributed transaction cannot be completed,
none of the operations is completed.

Known Problems and Restrictions 6–27

If you have DECnet/OSI installed on a system running OpenVMS VAX Version
6.1 or higher or OpenVMS Alpha Version 6.2 or higher, you can run Oracle Rdb
operations that require the two-phase commit protocol.

For more information about the two-phase commit protocol, see the Oracle Rdb
Guide to Distributed Transactions.

6.0.52 Multiblock Page Writes May Require Restore Operation
If a node fails while a multiblock page is being written to disk, the page in
the disk becomes inconsistent and is detected immediately during failover.
(Failover is the recovery of an application by restarting it on another computer.)
The problem is rare and occurs because only single-block I/O operations are
guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area-level restore operation. Database integrity is
not compromised, but the affected area will not be available until the restore
operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required.

6.0.53 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to
Clean Up Transactions

If a program attaches to a database on a remote node and it loses the connection
before the COMMIT statement is issued, there is nothing you can do except exit
the program and start again.

The problem occurs when a program is connected to a remote database and
updates the database, but then just before it commits, the network fails. When
the commit executes, SQL shows, as it normally should, that the program has
lost the link. Assume that the user waits for a minute or two, then tries the
transaction again. The problem is that when the start transaction is issued for
the second time, it fails because old information still exists about the previous
failed transaction. This occurs even if the user issues a DISCONNECT statement
(in Release 4.1 and earlier, a FINISH statement), which also fails with an
RDB-E-IO_ERROR error message.

6.0.54 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly
Data Distributor) begins running after an application has begun modifying the
database, the copy processes will catch up to the application and will not be
able to process database pages that are logically ahead of the application in
the RDB$CHANGES system table. The copy processes all align waiting for the
same database page and do not move on until the application has released it.
The performance of each copy process degrades because it is being paced by the
application.

When a copy process completes updates to its respective remote database,
it updates the RDB$TRANSFERS system table and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding
up any database updates until the deletion process is complete. The application
stalls while waiting for the RDB$CHANGES table. The resulting contention

6–28 Known Problems and Restrictions

for RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

This is a known restriction in Release 4.0 and higher. Oracle Rdb uses page
locks as latches. These latches are held only for the duration of an action on
the page and not to the end of transaction. The page locks also have blocking
asynchronous system traps (ASTs) associated with them. Therefore, whenever
a process requests a page lock, the process holding that page lock is sent a
blocking AST (BLAST) by OpenVMS. The process that receives such a blocking
AST queues the fact that the page lock should be released as soon as possible.
However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time.
An Oracle Rdb verb is an Oracle Rdb query that executes atomically, within a
transaction. Therefore, verbs that require the scan of a large table, for example,
can be quite long. An updating application does not release page locks until its
verb has completed.

The reasons for holding on to the page locks until the end of the verb are
fundamental to the database management system.

6.0.55 SQL Does Not Display Storage Map Definition After Cascading Delete
of Storage Area

When you delete a storage area using the CASCADE keyword and that storage
area is not the only area to which the storage map refers, the SHOW STORAGE
MAP statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE
Store clause: STORE USING (EMPLOYEE_ID)

IN DEG_AREA WITH LIMIT OF (’00250’)
OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> -- Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> --
SQL> -- Display the storage map definition.
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW STORAGE MAP DEGREES_MAP1

DEGREES_MAP1
For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE

SQL>

The other storage area, DEG_AREA2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map
qualifier to see the mapping.

Known Problems and Restrictions 6–29

6.0.56 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
When you use LIKE . . . IGNORE CASE, programs linked under Oracle Rdb
Release 4.2 and Release 5.1, but run under higher versions of Oracle Rdb, may
result in incorrect results or %RDB-E-ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE, or recompile
and relink under a higher version (Release 6.0 or higher.)

6.0.57 Different Methods of Limiting Returned Rows from Queries
You can establish the query governor for rows returned from a query by using the
SQL SET QUERY LIMIT statement, a logical name, or a configuration parameter.
This note describes the differences between the mechanisms.

• If you define the RDMS$BIND_QG_REC_LIMIT logical name or RDB_BIND_
QG_REC_LIMIT configuration parameter to a small value, the query will
often fail with no rows returned. The following example demonstrates setting
the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can
process the SELECT statement. In this example, interactive SQL loads
its metadata cache to allow it to check that the column EMPLOYEE_ID
really exists for the table. The queries on the Oracle Rdb system tables
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it.
Raising the limit to a number less than 100 (the cardinality of EMPLOYEES)
but more than the number of columns in EMPLOYEES (that is, the number
of rows to read from the RDB$RELATION_FIELDS system table) is sufficient
to read each column definition.

To see an indication of the queries executed against the system tables, define
the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter as S or B.

• If you set the row limit using the SQL SET QUERY statement and run the
same query, it returns the number of rows specified by the SQL SET QUERY
statement before failing:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in
any way.

6–30 Known Problems and Restrictions

Like the SET QUERY LIMIT statement, the SQL precompiler and
module processor command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG_
REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other
interfaces that read the Oracle Rdb system tables as part of query processing.

6.0.58 Suggestions for Optimal Usage of the SHARED DATA DEFINITION
Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

1. Process the metadata.

2. Lock the index name.

Because new metadata (which includes the index name) is not written to
disk until the end of the index process, Oracle Rdb must ensure index name
uniqueness across the database during this time by taking a special lock on
the provided index name.

3. Read the table for sorting by selected index columns and ordering.

4. Sort the key data.

5. Build the index (includes partitioning across storage areas).

6. Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system table
and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

• You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

• By assigning the location of the temporary sort work files SORTWORK0,
SORTWORK1, . . . , SORTWORK9 to different disks for each parallel process
that issues the SHARED DATA DEFINITION statement, you can increase the
efficiency of sort operations. This minimizes any possible disk I/O bottlenecks
and allows overlap of the SORT read/write cycle.

• If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk I/O savings. That is, pages
are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the I/O load on the table.

• If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name
or RDB_BIND_BUFFERS configuration parameter or the NUMBER OF
BUFFERS IS clause in SQL to change the number of buffers).

Known Problems and Restrictions 6–31

• To distribute the disk I/O load, place the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes will result in contention during the index creation (Step 5) for SPAM
pages.

• Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

• Even though snapshot I/O should be minimal, consider disabling snapshots
during parallel index creation.

• Refer to the Oracle Rdb Guide to Performance and Tuning to determine
the appropriate working set values for each process to minimize excessive
paging activity. In particular, avoid using working set parameters where
the difference between WSQUOTA and WSEXTENT is large. The SORT
utility uses the difference between these two values to allocate scratch virtual
memory. A large difference (that is, the requested virtual memory grossly
exceeds the available physical memory) may lead to excessive page faulting.

• The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or I/O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

• Using the SHARED DATA DEFINITION clause on a single-file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

The following table displays the elapsed time benefit when creating multiple
indexes in parallel with the SHARED DATA DEFINITION clause. The
table shows the elapsed time for 10 parallel process index creations (Index1,
Index2, . . . Index10) and one process with 10 sequential index creations (All10).
In this example, global buffers are enabled and the number of buffers is 500.
The longest time for a parallel index creation is Index7 with an elapsed time of
00:02:34.64, compared to creating 10 indexes sequentially with an elapsed time of
00:03:26.66. The longest single parallel create index elapsed time is shorter than
the elapsed time of creating all 10 of the indexes serially.

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All 10 00:03:26.66

6–32 Known Problems and Restrictions

6.0.59 Side Effect when Calling Stored Routines
When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called
is also called by a stored function during the calculation of an argument value,
passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

SQL> CREATE MODULE M
cont> LANG SQL
cont>
cont> PROCEDURE P (IN :A INTEGER, IN :B INTEGER, OUT :C INTEGER);
cont> BEGIN
cont> SET :C = :A + :B;
cont> END;
cont>
cont> FUNCTION F () RETURNS INTEGER
cont> COMMENT IS ’expect F to always return 2’;
cont> BEGIN
cont> DECLARE :B INTEGER;
cont> CALL P (1, 1, :B);
cont> TRACE ’RETURNING ’, :B;
cont> RETURN :B;
cont> END;
cont> END MODULE;
SQL>
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :CC INTEGER;
cont> CALL P (2, F(), :CC);
cont> TRACE ’Expected 4, got ’, :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written
to the called routine’s parameter area before complex expression values are
calculated. These calculations may (as in the example) overwrite previously
copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for
the routine. The following example shows the workaround:

SQL> BEGIN
cont> DECLARE :BB, :CC INTEGER;
cont> SET :BB = F();
cont> CALL P (2, :BB, :CC);
cont> TRACE ’Expected 4, got ’, :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb7.

Known Problems and Restrictions 6–33

6.0.60 Nested Correlated Subquery Outer References Incorrect
This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected. Outer references
from aggregation subqueries contained within nested queries could receive
incorrect values, causing the overall query to return incorrect results. The
general symptom for an outer query that returned rows 1 to n was that the inner
aggregation query would operate with the nth - 1 row data (usually NULL for row
1) when it should have been using the nth row data.

This problem has existed in various forms for all previous versions of Oracle
Rdb7, but only appears in Release 6.1 and later when the inner of the nested
queries contains an UPDATE statement.

The following example demonstrates the problem:

SQL> ATTACH ’FILENAME SHIPPING’;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR
cont> VOYAGE_NUM = 4909;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR 1200
4904 311 FIR 690
4909 291 IRON ORE 3000
4909 350 BAUXITE 1100
4909 350 COPPER 1200
4909 355 MANGANESE 550
4909 355 TIN 500

7 rows selected

SQL> BEGIN
cont> FOR :A AS EACH ROW OF
cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = ’SANDRA C.’ OR
cont> V.SHIP_NAME = ’DAFFODIL’ DO
cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCUR1 FOR
cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE_NUM = :A.VOYAGE_NUM DO
cont> UPDATE MANIFEST
cont> SET TONNAGE = (SELECT (AVG (M1.EXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :A.VOYAGE_NUM)
cont> WHERE CURRENT OF MODCUR1;
cont> END FOR;
cont> END FOR;
cont> END;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR
cont> VOYAGE_NUM = 4909;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR NULL
4904 311 FIR NULL
4909 291 IRON ORE 933
4909 350 BAUXITE 933
4909 350 COPPER 933
4909 355 MANGANESE 933
4909 355 TIN 933

7 rows selected

The correct value for TONNAGE on both rows for VOYAGE_NUM 4904 (outer
query row 1) is AVG (311+311)*3=933. However, Oracle Rdb7 calculates it as AVG
(NULL+NULL)*3=NULL. In addition, the TONNAGE value for VOYAGE_NUM
4909 (outer query row 2) is actually the TONNAGE value for outer query row 1.

6–34 Known Problems and Restrictions

A workaround is to declare a variable of the same type as the outer reference
data item, assign the outer reference data into the variable before the inner query
that contains the correlated aggregation subquery, and reference the variable
in the aggregation subquery. Keep in mind the restriction on the use of local
variables in FOR cursor loops.

For example:

SQL> DECLARE :VN INTEGER;
SQL> BEGIN
cont> FOR :A AS EACH ROW OF
cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = ’SANDRA C.’ DO
cont> SET :VN = :A.VOYAGE_NUM;
cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCUR1 FOR
cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE_NUM = :A.VOYAGE_NUM DO
cont> UPDATE MANIFEST
cont> SET TONNAGE = (SELECT (AVG (M1.EXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :VN)
cont> WHERE CURRENT OF MODCUR1;
cont> END FOR;
cont> END FOR;
cont> END;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR 933
4904 311 FIR 933

This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected.

6.0.61 Considerations when Using Holdable Cursors
If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may
not remain stable. That is, rows may be inserted, updated, and deleted by other
users because no locks are held on the rows selected by the holdable cursor after
a commit or rollback occurs. Moreover, depending on the access strategy, rows not
yet fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in
a concurrent user environment:

• If the access strategy forces Oracle Rdb to take a data snapshot, the data
read and cached may be inaccurate by the time the cursor fetches the data.

For example, user 1 opens a cursor and commits the transaction. User
2 deletes rows read by user 1 (this is possible because the read locks are
released). It is possible for user 1 to report data now deleted and committed.

• If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.

Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the
data that was fetched. However, the duplicates chain could be revised by the
time Oracle Rdb returns to using it.

Holdable cursors are a very powerful feature for read-only or predominantly read-
only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

Known Problems and Restrictions 6–35

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP or
configuration parameter RDB_BIND_HOLD_CURSOR_SNAP to the value 1 to
force all hold cursors to fetch the result set into a cached data area. (The cached
data area appears as a ‘‘Temporary Relation’’ in the optimizer strategy displayed
by the SET FLAGS STRATEGY statement or the RDMS$DEBUG_FLAGS S flag.)
This logical name or configuration parameter helps to stabilize the cursor to some
degree.

6.0.62 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for
PL/I in Oracle Rdb Release 5.0 or Higher

The SQL statement INCLUDE SQLDA2 is not supported for use with the PL/I
precompiler in Oracle Rdb Release 5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle
Rdb.

6.0.63 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations
Incorrectly

The Pascal precompiler for SQL gives an incorrect %SQL-I-UNMATEND error
when it parses a declaration of an array of records. The precompiler does not
associate the END statement with the record definition, and the resulting
confusion in host variable scoping causes a fatal error.

A workaround for the problem is to declare the record as a type and then define
your array of that type. For example:

main.spa:

program main (input,output);

type
exec sql include ’bad_def.pin’; !gives error
exec sql include ’good_def.pin’; !ok
var

a : char;

begin
end.

bad_def.pin

x_record = record
y : char;
variable_a: array [1..50] of record

a_fld1 : char;
b_fld2 : record;

t : record
v : integer;

end;
end;

end;
end;

good_def.pin

6–36 Known Problems and Restrictions

good_rec = record
a_fld1 : char;
b_fld2 : record

t : record
v: integer;

end;
end;

end;

x_record = record
y : char
variable_a : array [1..50] of good_rec;

end;

6.0.64 RMU Parallel Backup Command Not Supported for Use with SLS
The RMU Parallel Backup command is not supported for use with the Storage
Library System (SLS) for OpenVMS.

6.1 Oracle CDD/Repository Restrictions
This section describes known problems and restrictions in Oracle CDD/Repository
Release 7.0 and earlier.

6.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
Some Oracle Rdb features are not fully supported by all versions of Oracle
CDD/Repository. Table 6–1 shows which versions of Oracle CDD/Repository
support Oracle Rdb features and the extent of support.

In Table 6–1, repository support for Oracle Rdb7 features can vary as follows:

• Explicit support—The repository recognizes and integrates the feature, and
you can use the repository to manipulate the item.

• Implicit support—The repository recognizes and integrates the feature, but
you cannot use any repository interface to manipulate the item.

• Pass-through support—The repository does not recognize or integrate the
feature, but allows the Oracle Rdb7 operation to complete without aborting or
overwriting metadata. With pass-through support, a CDD-I-MBLRSYNINFO
informational message may be returned.

Table 6–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Release
of Oracle Rdb

Minimum Release of
Oracle CDD/Repository Support

CASE, NULLIF, and
COALESCE expressions

6.0 6.1 Implicit

CAST function 4.1 7.0 Explicit

Character data types to support
character sets

4.2 6.1 Implicit

Collating sequences 3.1 6.1 Explicit

Constraints (PRIMARY KEY,
UNIQUE, NOT NULL, CHECK,
FOREIGN KEY)

3.1 5.2 Explicit

(continued on next page)

Known Problems and Restrictions 6–37

Table 6–1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Release
of Oracle Rdb

Minimum Release of
Oracle CDD/Repository Support

CURRENT_DATE, CURRENT_
TIME, and CURRENT_
TIMESTAMP functions

4.1 7.0 Explicit

CURRENT_USER, SESSION_
USER, SYSTEM_USER
functions

6.0 7.0 Explict

Date arithmetic 4.1 6.1 Pass-through

DATE ANSI, TIME,
TIMESTAMP, and INTERVAL
data types

4.1 6.1 Explicit

Delimited identifiers 4.2 6.11 Explicit

External functions 6.0 6.1 Pass-through

External procedures 7.0 6.1 Pass-through

EXTRACT, CHAR_LENGTH,
and OCTET_LENGTH functions

4.1 6.1 Explicit

GRANT/REVOKE privileges 4.0 5.0 accepts but does not
store information

Pass-through

Indexes 1.0 5.2 Explicit

INTEGRATE DOMAIN 6.1 6.1 Explicit

INTEGRATE TABLE 6.1 6.1 Explicit

Logical area thresholds for
storage maps and indexes

4.1 5.2 Pass-through

Multinational character set 3.1 4.0 Explicit

Multiversion environment
(multiple Rdb versions)

4.1 5.1 Explicit

NULL keyword 2.2 7.0 Explicit

Oracle7 compatibility functions,
such as CONCAT, CONVERT,
DECODE, and SYSDATE

7.0 7.0 Explicit

Outer joins, derived tables 6.0 7.0 Pass-through

Query outlines 6.0 6.1 Pass-through

Storage map definitions correctly
restored

3.0 5.1 Explicit

Stored functions 7.0 6.1 Pass-through

Stored procedures 6.0 6.1 Pass-through

SUBSTRING function 4.0 7.0 supports all features
5.0 supports all but 4.2
MIA features 2

Explicit

Temporary tables 7.0 6.1 Pass-through

Triggers 3.1 5.2 Pass-through

1The repository does not preserve the distinction between uppercase and lowercase identifiers. If you
use delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not
include objects with names that are duplicates except for case.
2Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

(continued on next page)

6–38 Known Problems and Restrictions

Table 6–1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Release
of Oracle Rdb

Minimum Release of
Oracle CDD/Repository Support

TRUNCATE TABLE 7.0 6.1 Pass-through

TRIM and POSITION functions 6.1 7.0 Explicit

UPPER, LOWER, TRANSLATE
functions

4.2 7.0 Explicit

USER function 2.2 7.0 Explict

6.1.2 Multischema Databases and CDD/Repository
You cannot use multischema databases with CDD/Repository and Oracle Rdb
release 7.0 and earlier. This problem will be corrected in a future release of
Oracle Rdb.

6.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU
Privileges Access Control Lists

Oracle Rdb provides special Oracle RMU privileges that use the unused portion
of the OpenVMS access control list (ACL) to manage access to Oracle RMU
operations.

You can use the RMU Set Privilege and RMU Show Privilege commands
to set and show the Oracle RMU privileges. The DCL SHOW ACL and
DIRECTORY/ACL commands also show the added access control information;
however, these tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the
root file for access control entries (ACEs) that possess the SECURITY and
DBADM (ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the
CDD$SYSTEM rights identifier on each file created within the anchor directory.
CDD$SYSTEM is a special, reserved rights identifier created by Oracle
CDD/Repository.

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it
adds (or augments) an OpenVMS default ACL to the anchor directory. Typically,
this ACL allows access to the repository files for CDD$SYSTEM and denies access
to everyone else. All files created in the anchor directory inherit this default ACL,
including the repository database.

Unfortunately, there is an interaction between the default ACL placed on the
repository database by Oracle CDD/Repository and the Oracle RMU privileges
ACL processing.

Within the ACL on the repository database, the default access control entries
(ACEs) that were inherited from the anchor directory will precede the ACEs
added by RMU Restore. As a result, the CDD$SYSTEM identifier will not have
any Oracle RMU privileges granted to it. Without these privileges, if the user
does not have the OpenVMS SYSPRV privilege enabled, Oracle RMU operations,
such as Convert and Restore, will not be allowed on the repository database.

Known Problems and Restrictions 6–39

The following problems may be observed by users who do not have the SYSPRV
privilege enabled:

• While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY
command:

If the CDD$TEMPLATEDB backup (.rbf) file was created by a previous
version of Oracle Rdb7, the automatic RMU Convert operation that will be
carried out on the .rbf file will fail because SYSPRV privilege is required.

If the CDD$TEMPLATEDB backup (.rbf) file was created by the current
version of Oracle Rdb7, the restore of the repository database will fail
because the default ACEs that already existed on the repository file that
was backed up will take precedence, preventing RMU$CONVERT and
RMU$RESTORE privileges from being granted to CDD$SYSTEM or the
user.

If no CDD$TEMPLATEDB is available, the repository database will be
created without a template, inheriting the default ACL from the parent
directory. The ACE containing all the required Oracle RMU privileges
will be added to the end of the ACL; however, the preexisting default
ACEs will prevent any Oracle RMU privilege from being granted.

• You must use the RMU Convert command to upgrade the database disk
format to Oracle Rdb7 after installing Release 7.0. This operation requires
the SYSPRV privilege.

During the conversion, RMU Convert adds the ACE containing the Oracle
RMU privileges at the end of the ACL. Because the repository database
already has the default Oracle CDD/Repository ACL associated with it, the
Oracle CDD/Repository ACL will take precedence, preventing the granting of
the Oracle RMU privileges.

• During a CDO MOVE REPOSITORY command, the Oracle RMU privilege
checking may prevent the move, as the RMU$COPY privilege has not been
granted on the repository database.

• When you execute the CDD template builder CDD_BUILD_TEMPLATE, the
step involving RMU Backup privilege has not been granted.

Oracle CDD/Repository Releases 5.2 and higher correct this problem. A version
of the Oracle CDD/Repository software that corrects this problem and allows new
repositories to be created using Oracle Rdb7 is provided on the Oracle Rdb7 kit
for use on OpenVMS VAX systems. See Section 6.1.3.1 for details.

6.1.3.1 Installing the Corrected CDDSHR Images
OpenVMS VAX Systems

Note

The following procedure must be carried out if you have installed or plan
to install Oracle Rdb7 and have already installed CDD/Repository Release
5.1 software on your system.

Due to the enhanced security checking associated with Oracle RMU commands
in Oracle Rdb on OpenVMS VAX, existing CDDSHR images for CDD/Repository
Release 5.1 must be upgraded to ensure that the correct Oracle RMU privileges
are applied to newly created or copied repository databases.

6–40 Known Problems and Restrictions

Included in the Oracle Rdb7 for OpenVMS VAX distribution kit is a CDD
upgraded image kit, called CDDRDB042, that must be installed after you have
installed the Oracle Rdb7 for OpenVMS VAX kit.

This upgrade kit should be installed by using VMSINSTAL. It automatically
checks which version of CDDSHR you have installed and replaces the existing
CDDSHR.EXE with the corrected image file. The existing CDDSHR.EXE will be
renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD_TEMPLATE.COM
procedure in SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install
Oracle Rdb7 V7.0, you must install the corrected CDDSHR image again
to ensure that the correct CDDSHR images have been made available.

The CDD/Repository upgrade kit determines which version of
CDD/Repository is installed and replaces the existing CDDSHR.EXE
with the appropriate version of the corrected image.

6.1.3.2 CDD Conversion Procedure
OpenVMS VAX Systems

Oracle Rdb7 provides RDB$CONVERT_CDD$DATABASE.COM, a command
procedure that both corrects the anchor directory ACL and performs the RMU
Convert operation. The command procedure is located in SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs
an RMU Convert operation.

Use the procedure RDB$CONVERT_CDD$DATABASE.COM to process the
anchor directory and update the ACLs for both the directory and, if available, the
repository database.

This procedure accepts one parameter: the name of the anchor directory that
contains, or will contain, the repository files. For example:

$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command
procedure to locate them, set the Oracle RMU privileges ACL, and convert the
databases. Use DCL commands similar to the following:

$ LOOP:
$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")
$ IF REP_SPEC .NES. ""
$ THEN
$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE -

’F$PARSE(REP_SPEC,,,"DIRECTORY")’
$ GOTO LOOP
$ ENDIF

Known Problems and Restrictions 6–41

